Seat No. : _____

LE-110

April-2014

B.Sc. Semester – VI

CC-308 : Mathematics (Analysis – II)

Time : 3 Hours]

[Max. Marks: 70

Instructions : (i) All the five questions are compulsory.

- (ii) Each question is of **14** marks.
- (iii) Figures to the right indicate marks of the question.

1. (a) Define : Riemann integrable function on [a, b]. Let a function $f(x) = \frac{3x^2}{2}$ and $P = \left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n}{n}\right\}$ be a partition of [0, 1], then compute $\lim_{n \to \infty} U[f; P]$ and $\lim_{n \to \infty} L[f; P].$ 7

OR

Prove : If f, $g \in R$ [a, b] and g is bounded away from zero, then $fg \in R$ [a, b] and $\frac{f}{g} \in R[a, b]$.

(b) Let g be continuous on [a, b] and f has derivative which is continuous and never changes sign then for some $a \le c \le b$ prove that $\int_{a}^{b} f(x) g(x) dx = f(a) \int_{a}^{c} g(x) dx + f(b) \int_{c}^{b} g(x) dx$.

OR

Examine the validity of the expression $\frac{2\pi^2}{9} \le \int_{\pi/6}^{\pi/2} \frac{2x \, dx}{\sin x} \le \frac{4\pi^2}{9}$. Is the statement $|f| \in R[a, b] \Rightarrow f \in R[a, b]$ true ? Explain.

LE-110

P.T.O.

7

2. (a) Define convergent series and show that the limit of the n-th term of the convergent series is zero. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{5n^5 + 2n^2 + 9}$ 7

OR

State and prove Cauchy's condensation test and hence, show that the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p} \text{ converges for } p > 1 \text{ and it diverges for } p \le 1$$

(b) Define absolute convergence of the series. Discuss the absolute convergence of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{\sqrt{n^2 + 7} - n}{\sqrt{n}} \right)$. 7

OR

Define an alternating series. If $a_{n+1} \leq a_n$ and $\lim_{n \to \infty} a_n = 0$, then prove that alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. Discuss the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \cdot (n+1)}$.

3. (a) Prove : If $\sum a_n$ is absolutely convergent then any rearrangement of $\sum a_n$ converges to the same sum. 7

OR

State and prove Mertens' theorem for the Cauchy product of two series.

(b) Define power series centered at x_0 . Find the radius of convergence of the following power series :

7

(i)
$$\sum \frac{10^n x^n}{2^{n^2}}$$

(ii) $\sum \frac{3^n x^n}{n!}$

OR

Define improper integral of first and second kind. Test convergence :

(i)
$$\int_{0}^{\infty} \frac{dx}{e^x}$$
 (ii) $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$

LE-110

4.

(a) Define Taylor's series for the function f about x_0 . State Taylor's theorem. Using Lagrangian form for the remainder, for any real x show that $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ 7

OR

For $-1 \le x < 1$, show that $\ln(1-x) = -x = \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$ hence, deduce that $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

(b) Obtain the power series solution of the differential equation (1 - x) y' + 1 = 0 with the condition y(0) = 1. 7

OR

Show that $(1 + x)^{\alpha} \approx 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha - 1) (\alpha - 2) \dots (\alpha - n + 1)}{n!} x^n$ and find its radius of convergence. Give suitable name to this result.

- 5. Attempt any **seven** in short :
 - (i) State first fundamental theorem for the R-integrable function.
 - (ii) If f R-integrable function then show that $\begin{vmatrix} 0 \\ \int \\ a \\ a \end{vmatrix} = \begin{cases} 0 \\ f(x) \\ dx \\ a \end{vmatrix} = \begin{cases} 0 \\ f(x) \\ dx \\ a \end{vmatrix}$
 - (iii) For the series $\sum a_n$ if $\lim_{n \to \infty} a_n \neq 0$ then what can be said about the convergence of $\sum a_n$? Justify.

(iv) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Does it converge absolutely ? Justify.

(v) Test the convergence of
$$\int_{-\infty}^{\infty} \frac{1}{2^{x-1}} dx$$
.

(vi) Find the Cauchy product of the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ with itself.

- (vii) State the series of e^x , for any real *x*.
- (viii) State the Binomial series theorem.
- (ix) If $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ and y(x) = y'(x), then find the coefficient $a_1, a_2, a_3, \dots, a_n$ in terms of a_0 .

LE-110

14

LE-110