Seat No. : \qquad

LE-110

April-2014

B.Sc. Semester - VI

CC-308 : Mathematics (Analysis - II)

Time : 3 Hours]
[Max. Marks : 70
Instructions: (i) All the five questions are compulsory.
(ii) Each question is of $\mathbf{1 4}$ marks.
(iii) Figures to the right indicate marks of the question.

1. (a) Define : Riemann integrable function on [a, b]. Let a function $\mathrm{f}(x)=\frac{3 x^{2}}{2}$ and $\mathrm{P}=\left\{0, \frac{1}{\mathrm{n}}, \frac{2}{\mathrm{n}}, \frac{3}{\mathrm{n}}, \ldots . ., \frac{\mathrm{n}}{\mathrm{n}}\right\}$ be a partition of $[0,1]$, then compute $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{U}[f ; \mathrm{P}]$ and $\lim _{n \rightarrow \infty} L[f ; P]$.

OR

Prove : If $f, g \in R[a, b]$ and g is bounded away from zero, then $f g \in R[a, b]$ and $\frac{f}{g} \in R[a, b]$.
(b) Let g be continuous on [a, b] and f has derivative which is continuous and never changes sign then for some $\mathrm{a} \leq \mathrm{c} \leq \mathrm{b}$ prove that $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{g}(x) \mathrm{d} x=\mathrm{f}(\mathrm{a}) \int_{\mathrm{a}}^{\mathrm{c}} \mathrm{g}(x) \mathrm{d} x+$ f(b) $\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{g}(x) \mathrm{d} x$.

OR

Examine the validity of the expression $\frac{2 \pi^{2}}{9} \leq \int_{\pi / 6}^{\pi / 2} \frac{2 x \mathrm{~d} x}{\sin x} \leq \frac{4 \pi^{2}}{9}$. Is the statement $|f| \in R[a, b] \Rightarrow f \in R[a, b]$ true ? Explain.
2. (a) Define convergent series and show that the limit of the n-th term of the convergent series is zero. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1^{2}+2^{2}+3^{2}+\ldots .+n^{2}}{5 n^{5}+2 n^{2}+9}$

OR

State and prove Cauchy's condensation test and hence, show that the series
$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges for $\mathrm{p}>1$ and it diverges for $\mathrm{p} \leq 1$.
(b) Define absolute convergence of the series. Discuss the absolute convergence of the series $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{\sqrt{n^{2}+7}-n}{\sqrt{n}}\right)$.

OR

Define an alternating series. If $a_{n+1} \leq a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=0$, then prove that alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges. Discuss the convergence of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n \cdot(n+1)}$.
3. (a) Prove: If $\sum \mathrm{a}_{\mathrm{n}}$ is absolutely convergent then any rearrangement of $\sum \mathrm{a}_{\mathrm{n}}$ converges to the same sum.

OR

State and prove Mertens' theorem for the Cauchy product of two series.
(b) Define power series centered at x_{0}. Find the radius of convergence of the following power series:
(i) $\sum \frac{10^{n} x^{n}}{2^{n^{2}}}$
(ii) $\sum \frac{3^{n} x^{n}}{n!}$

OR
Define improper integral of first and second kind. Test convergence :
(i) $\int_{0}^{\infty} \frac{\mathrm{d} x}{\mathrm{e}^{x}}$
(ii) $\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$
4. (a) Define Taylor's series for the function f about x_{0}. State Taylor's theorem. Using Lagrangian form for the remainder, for any real x show that $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$.

OR

For $-1 \leq x<1$, show that $\ln (1-x)=-x=\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots$. hence, deduce that $\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$.
(b) Obtain the power series solution of the differential equation $(1-x) y^{\prime}+1=0$ with the condition $\mathrm{y}(0)=1$.

OR

Show that $(1+x)^{\alpha} \approx 1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \ldots .(\alpha-n+1)}{n!} x^{n}$ and find its radius of convergence. Give suitable name to this result.
5. Attempt any seven in short :
(i) State first fundamental theorem for the R-integrable function.
(ii) If f R-integrable function then show that $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$
(iii) For the series $\sum \mathrm{a}_{\mathrm{n}}$ if $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}} \neq 0$ then what can be said about the convergence of $\sum \mathrm{a}_{\mathrm{n}}$? Justify.
(iv) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Does it converge absolutely? Justify.
(v) Test the convergence of $\int_{-\infty}^{1} \frac{1}{2^{x-1}} \mathrm{~d} x$.
(vi) Find the Cauchy product of the series $\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\mathrm{n}+1}$ with itself.
(vii) State the series of e^{x}, for any real x.
(viii) State the Binomial series theorem.
(ix) If $y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ and $y(x)=y^{\prime}(x)$, then find the coefficient $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ in terms of a_{0}.

