Seat No. : \qquad

MN-148
 March-2019

M.Sc., Sem.-IV

509 : Mathematics

(Number Theory)
(New)
Time : 2:30 Hours]
[Max. Marks : 70

1. (A) Answer the following questions :
(1) Find all solutions in the positive integers of $54 x+21 y=906$.
(2) Let x and y be real numbers. Prove the following:
(i) For any integer $\mathrm{n},[\mathrm{x}+\mathrm{n}]=[x]+\mathrm{n}$.
(ii) $[x+y] \geq[x]+[y]$.

OR
(1) If $\mathrm{n}=\mathrm{p}_{1}^{\mathrm{k}_{1}} \mathrm{p}_{2}^{\mathrm{k}_{2}} \ldots . \mathrm{p}_{\mathrm{r}}^{\mathrm{k}_{\mathrm{r}}}$ is the prime factorization of $\mathrm{n}>1$, prove that

$$
\tau(\mathrm{n})=\left(\mathrm{k}_{1}+1\right)\left(\mathrm{k}_{2}+1\right) \ldots\left(\mathrm{k}_{\mathrm{r}}+1\right)
$$

(2) Prove that if $2^{\mathrm{k}}-1$ is prime $(\mathrm{k}>1)$, then $\mathrm{n}=2^{\mathrm{k}-1}\left(2^{\mathrm{k}}-1\right)$ is perfect and every even perfect number is of this form.
(B) Attempt any four.
(1) Write down the prime factorization of 11 !.
(2) Find the highest power of 5 dividing 2000!
(3) What is value of $\sum_{\mathrm{d} \mid 40} \phi(\mathrm{~d}) ?$
(4) Calculate σ (957).
(5) For any integer $n \geq 3$, what is the value of $\sum_{k=1}^{n} \mu(k!)$?
(6) True/False: A perfect square cannot be a perfect number.
2. (A) Answer the following questions :
(1) State Chinese remainder theorem. (Do not prove).

Solve : $x \equiv 5(\bmod 11), x \equiv 14(\bmod 29), x \equiv 5(\bmod 31)$.
(2) State and prove Wilson's theorem. Does the converse true ? Justify your answer.

OR

(1) Find all the primitive roots of 17.
(2) Using the theory of indices, solve $9 x^{8} \equiv 8(\bmod 17)$.
(B) Attempt any four :
(1) Is the congruence $28 x \equiv 15(\bmod 35)$ solvable ?
(2) True/False : The units digit of 3^{100} is 3 .
(3) State Euler's theorem. (Do not prove.)
(4) What is the remainder when 15 ! is divided by 17 ?
(5) What is the order of 3 modulo 13 ?
(6) Is 3 a primitive root of 19 ?
3. (A) Answer the following questions :
(1) Solve the quadratic congruence $5 x^{2}+6 x+1 \equiv 0(\bmod 23)$.
(2) State and prove Euler's criterion.

OR

(1) If p is an odd prime, prove that $\sum_{\mathrm{a}=1}^{\mathrm{p}-1}(\mathrm{a} / \mathrm{p})=0$.
(2) Solve the quadratic congruence $x^{2} \equiv 23\left(\bmod 7^{3}\right)$.
(B) Attempt any three :
(1) Is 3 a quadratic residue of 23 ?
(2) True/False : 8 is a quadratic residue of 13 .
(3) Find the value of the Legendre symbol (-23/59).
(4) State quadratic reciprocity law. (Do not prove.)
(5) Evaluate the Jacobi symbol (21/221).
4. (A) Answer the following questions :
(1) Solve the Diophantine equation $364 x+227 y=1$ by means of continued fraction.
(2) Determine the infinite continued fraction representation of $\frac{5+\sqrt{37}}{4}$.

OR

(1) Find the fundamental solution of $x^{2}-41 y^{2}=1$.
(2) Evaluate $[1 ; 2, \overline{3,1}]$.
(B) Attempt any three.
(1) Express $71 / 55$ as a simple continued fraction.
(2) True/False : Even-numbered convergents form a strictly decreasing sequence.
(3) Evaluate $[\overline{2,3}]$.
(4) If $x_{1}=6$ and $y_{1}=1$ forms the fundamental solution of the equation $x^{2}-35 y^{2}=1$, then find its second positive solution.
(5) Find all primitive Pythagorean triples x, y, z in which $x=30$.
\qquad

MN-148

March-2019
M.Sc., Sem.-IV

509 : Mathematics

(Mathematical Methods)
(Old)
Time : 2:30 Hours]
[Max. Marks : 70

1. (A) Answer the following questions :
(1) Solve : $x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0$.
(2) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{\mathrm{v}} \mathrm{J}_{v}(x)\right]=x^{\mathrm{v}} \mathrm{J}_{\mathrm{v}-1}(x)$.

OR

(1) Find the Eigenvalues and Eigenfunctions of the Sturm-Liouville problem

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y^{\prime}(1)=0
$$

(2) Using the indicated substitutions, reduce the following equation to Bessel's differential equation and find a general solution in terms of Bessel functions.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(4 x^{4}-\frac{1}{4}\right) y=0 \quad\left(x^{2}=z\right)
$$

(B) Attempt any four.
(1) Write down the indicial equation of $4 x y^{\prime \prime}+2 y^{\prime}+y=0$.
(2) What is the radius of convergence of $\sum_{n=0}^{\infty}(n+1) n x^{n}$?
(3) True/False : $\mathrm{J}_{\mathrm{v}-1}(x)-\mathrm{J}_{\mathrm{v}+1}(x)=2 \mathrm{~J}_{v}^{\prime}(x)$.
(4) What is the value of $\Gamma(1 / 2)$?
(5) What is the value of $\mathrm{J}_{1 / 2}(\pi / 2)$?
(6) True/False; $\mathrm{J}_{0}(0)=1$.
2. (A) Answer the following :
(1) Using the Laplace transform, solve the following initial value problem.

$$
\mathrm{y}^{\prime \prime}-5 \mathrm{y}^{\prime}+6 \mathrm{y}=4 \mathrm{e}^{\mathrm{t}} \text { if } 0<\mathrm{t}<2 \text { and } 0 \text { if } \mathrm{t}>2 ;, \quad \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=-2 .
$$

(2) Find the inverse Laplace transform of $\frac{e^{-2 \pi s}}{s^{2}+2 s+2}$.

OR

(1) Using the second shifting theorem, find the Laplace transform of $\mathrm{t}^{2} \mathrm{u}(\mathrm{t}-1)$ and $(t-1) u(t-1)$.
(2) Find the inverse Laplace transform of $\frac{\mathrm{s}}{\left(\mathrm{s}^{2}-9\right)^{2}}$.
(B) Attempt any four :
(1) What is the Laplace transform of $\cos \omega t$?
(2) What is the Laplace transform of $\mathrm{e}^{2 t}$?
(3) Find the Laplace transform of $u(t-5)$.
(4) True/False : $\mathscr{L}\left(\mathrm{f}^{\prime \prime}\right)=\mathrm{s}^{2} \mathscr{L}(\mathrm{f})-\mathrm{sf}(0)-\mathrm{f}^{\prime}(0)$.
(5) State first shifting theorem.
(6) State second shifting theorem.
3. (A) Answer the following :
(1) Find the Fourier series of the function

$$
\mathrm{f}(x)=\left\{\begin{aligned}
1 & \text { if }-\pi / 2<x<\pi / 2 \\
-1 & \text { if } \quad \pi / 2<x<3 \pi / 2
\end{aligned}\right.
$$

Using the Parseval's identity prove that $1+\frac{1}{9}+\frac{1}{25}+\ldots=\frac{\pi^{2}}{8}$.
(2) Find the Fourier cosine integral of

$$
\mathrm{f}(x)=\left\{\begin{array}{ll}
1 & \text { if } 0<x<1 \\
0 & \text { if } x>1
\end{array} .\right.
$$

(1) Show that

$$
\int_{0}^{\infty} \frac{\cos x \mathrm{w}+\mathrm{w} \sin x \mathrm{w}}{1+\mathrm{w}^{2}} \mathrm{dw}= \begin{cases}0 & \text { if } x<0 \\ \frac{\pi}{2} & \text { if } x=0 \\ \pi \mathrm{e}^{-x} & \text { if } x>0\end{cases}
$$

(2) Find the Fourier transform of $x \mathrm{e}^{-x^{2}}$.

(B) Attempt any three :

(1) True/False : The smallest positive period p of $\cos 2 x$ is π.
(2) True/False : The function $\mathrm{f}(x)=\left|x^{3}\right|$ is even.
(3) Define Fourier cosine transform.
(4) True/False : $\mathscr{F}_{\mathrm{s}}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\}=-\mathrm{w} \mathscr{F}_{\mathrm{c}}\{\mathrm{f}(x)\}$.
(5) What is the value of the integral $\int_{-\pi}^{\pi} \cos ^{4} x \mathrm{~d} x$?
4. (A) Answer the following :
(1) Find the inverse Z-transform of $\frac{1}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}$, when
(i) $\frac{1}{3}<|z|<\frac{1}{2}$
(ii) $\frac{1}{2}<|z|$
(2) Find the Hankel transform of

$$
\begin{aligned}
\mathrm{f}(x)= & \left\{\begin{array}{ccc}
\mathrm{a}^{2}-x^{2}, & 0<x<\mathrm{a} \mathrm{n}=0 \\
0, & x>\mathrm{a} & \mathrm{n}=0 .
\end{array}\right. \\
& \text { OR }
\end{aligned}
$$

(1) Find the Z-transform of $\mathrm{c}^{\mathrm{k}} \cos \mathrm{ak}, \mathrm{k} \geq 0$.
(2) Prove that

$$
\mathrm{H}_{\mathrm{n}}\left\{\frac{\mathrm{~d}^{2} \mathrm{f}}{\mathrm{~d} x^{2}}\right\}=\frac{\mathrm{s}^{2}}{4}\left[\frac{\mathrm{n}+1}{\mathrm{n}-1} \mathrm{H}_{\mathrm{n}-2}(\mathrm{~s})-2 \frac{\mathrm{n}^{2}-3}{\mathrm{n}^{2}-1} \mathrm{H}_{\mathrm{n}}(\mathrm{~s})+\frac{\mathrm{n}-1}{\mathrm{n}+1} \mathrm{H}_{\mathrm{n}+2}(\mathrm{~s})\right] .
$$

(B) Attempt any three :
(1) State initial value theorem.
(2) What is the Z-transform of the sequence $\left\{\frac{1}{2^{\mathrm{k}}}\right\},-4 \leq \mathrm{k} \leq 4$?
(3) What is the order of the difference equation $6 y_{k+2}-y_{k+1}-y_{k}=0$?
(4) Define Hankel transform.
(5) What is the value of the integral $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{ax}} \mathrm{J}_{0}(\mathrm{~s} x) \mathrm{d} x$?

