No. : _____

MM-155

March-2019

M.Sc., Sem.-IV 508 : Mathematics

(Algebra-II)

Time: 2:30 Hours]

- 1. (A) Answer the following questions :
 - (1) Let R be a commutative ring with unity and let A be an ideal of R. Then prove that R/A is a field if and only if A is maximal.
 - (2) Prove that $M_{\frac{1}{2}} = \{f \in C[0, 1]/f(\frac{1}{2}) = 0\}$ is a maximal ideal in C[0,1].

OR

- (1) Prove that a finite integral domain is a field.
- (2) Let x and y belong to a commutative ring R with prime characteristic p.
 - (a) Show that $(x + y)^p = x^p + y^p$.
 - (b) Show that, for all positive integers n, $(x + y)^{p^n} = x^{p^n} + y^{p^n}$.

(B) Attempt any **four** :

- (1) Find all the units of the ring of polynomials $\mathbb{Z}_{p}[x]$. (pis prime here)
- (2) Let R = C[0, 1]. Show that the ring R has zero-divisors.
- (3) Give an example of an infinite ring with finite characteristic.
- (4) Give an example of a ring (not a field) which has infinitely many units.
- (5) Define the Boolean ring. Is it commutative ? Justify.
- (6) Give an example of a prime ideal that is not maximal.
- 2. (A) Answer the following questions :
 - (1) State and prove the mod p irreducibility test.
 - (2) Let F be a field and let I = {f(x) ∈ F[x]/f(a) = 0 for all a ∈ F}.
 Prove that I is an ideal in F[x]. Prove that I is infinite when F is finite, and I = {0} when F is infinite.

OR

1

MM-155

[Max. Marks : 70

14

4

- (1) Let F be a field and let $p(x) \in F[x]$. Then prove that < p(x) > is a maximal ideal in F[x] if and only if p(x) is irreducible over F.
- (2) Let $f(x) = 21x^3 3x^2 + 2x + 9$ be a polynomial in $\mathbb{Q}[x]$. Is this reducible over \mathbb{Q} ? Justify.
- (B) Attempt any **four** :
 - (1) Determine all ring homomorphisms from \mathbb{Q} to \mathbb{Q} .
 - (2) Can we have a non-zero polynomial f(x) ∈ ℝ[x] such that f(n) = 0 for each n ∈ N ? Justify.
 - (3) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ and $a_n \neq 0$. If r and s are relatively prime integers such that $f\left(\frac{\mathbf{r}}{\mathbf{s}}\right) = 0$ then prove that $r|a_0$ and $s|a_n$.
 - (4) Find infinitely many polynomials f(x) in Z₃[x] such that f(a) = 0 for all a ∈ Z₃.
 - (5) Prove or disprove : \mathbb{R} is ring isomorphic to \mathbb{C} .
 - (6) Let f(x) ∈ Q[x] such that f(π) = 0. What can be said about the polynomial f(x) ? Explain.
- 3. (A) Answer the following questions :
 - Show that for each prime p and each positive integer n, there is a unique field of order pⁿ.
 - (2) Prove that $x^6 2$ has a zero in Q ($\sqrt[6]{2}$) but it does not split in Q ($\sqrt[6]{2}$). Find the splitting field of $x^6 2$ over Q.

OR

- If E is a finite extension of F, prove that E is an algebraic extension of F. What can you say about the converse ?
- (2) Define the splitting field. Find the splitting field of $x^4 6x^2 7$ over \mathbb{Q} .
- (B) Attempt any three :
 - (1) What is the dimension of GF(128) over GF(16)?
 - (2) Describe the elements of $Q(\pi)$.
 - (3) Let $F = \mathbb{Q}(\pi^3)$. Find a basis for $F(\pi)$ over F.
 - (4) Show that ab is constructible if a and b are constructible.
 - (5) If F is a field of order 64, determine all the subfields of F.

MM-155

14

3

- 4. (A) Answer the following questions :
 - (1) Show that there is a quintic polynomial over \mathbb{Q} that cannot be solved by radicals.
 - (2) Let E be an extension field of Q. Show that any automorphism of E acts as the identity on Q.

OR

- (1) Describe the group Gal $(\mathbb{Q}(\sqrt[3]{2}, \omega)/\mathbb{Q})$. (Here, ω is a primitive cube root of unity.)
- (2) Define : (i) the Galois group of E over F(ii) Fixed field E_H of H (iii) the solvable group.
- (B) Attempt any **three** :
 - (1) Find the dimension of $\mathbb{Q}(\sqrt[3]{2}, \omega)$ over \mathbb{Q} (Here, ω is a primitive cube root of unity.)
 - (2) Is it possible to find a field F which has exactly 6 sub-fields ? Justify.
 - (3) Let f(x) ∈ F[x]. When we say that f(x) is solvable by radicals over the field F?
 - (4) Prove or disprove : 15 degree angle is constructible by straightedge, compass and a unit length.
 - (5) True or false: The real number $\sqrt[5]{3}$ is constructible.

No. : _____

MM-155

March-2019

M.Sc., Sem.-IV 508 : Mathematics

(Fourier Analysis) (Old)

Time: 2:30 Hours]

- 1. (A) Answer the following :
 - (1) If $\in L^1(\mathbb{T})$ then show that $\int_{0}^{2\pi} f = \int_{a}^{a+2\pi} f$ for any $a \in \mathbb{R}$. Also show that for essentially bounded functions, $\|T_a(f)\|_{L^{\infty}} = \|f\|_{L^{\infty}}$.
 - (2) State and prove Riemann Lebesgue Lemma.

OR

- (1) Evaluate the Fourier series of $f: [-\pi, \pi), f(x) = x$.
- (2) State and prove Uniqueness theorem for 2π periodic continuous functions.

(B) Attempt any four :

- (1) Let $f(x) = e^{-5x} + e^{5x}$ then $\hat{f}(5) =$ (a) 0 (b) -1
 - (c) 10 (d) 1
- (2) The Fourier transformation map $T: L^1 \to C_0(\mathbb{Z}), T(f) = \mathring{f}$ is
 - (a) One to one (b) onto
 - (c) (a) and (b) both (d) None of the above
- (3) Let $a_n = \frac{(-1)^n}{n^2}$ and $b_n = \frac{1}{n^2}$ then (a) $a_n = O(b_n)$ (b) $b_n = o(a_n)$
 - (c) $a_n = o(b_n)$ (d) None of the above

MM-155

[Max. Marks : 70

14

(4) Let
$$a_n = \frac{\sin n}{n}$$
 then
(a) $a_n = O\left(\frac{1}{n}\right)$ (b) $a_n = O\left(\frac{1}{n^2}\right)$
(c) $a_n = o\left(\frac{1}{n^2}\right)$ (d) None of the above
(5) Let f, $g \in L^1(\mathbb{T})$ and $f(x) = -g(x)$ almost everywhere in \mathbb{T} then
(a) $\hat{f}(n) = \hat{g}(n)$ for all $n \in \mathbb{Z}$
(b) $\hat{f}(n) = -\hat{g}(n)$ for all $n \in \mathbb{Z}$
(c) $\hat{f}(n) = -\hat{g}(n)$ only for all $n \in \mathbb{N}$
(d) None of the above
(6) Let $f \in L^1(\mathbb{T})$ and $f(-x) = -f(x)$ for all $x \in [-\pi, \pi]$ then
(a) $\hat{f}(0) = 0$ (b) $\hat{f}(-n) = -\hat{f}(n)$ for all $n \in \mathbb{Z}$
(c) $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$ (d) None of the above

2. (A) Answer the following :

- (1) Let $f, g \in L^1$ and $a \in \mathbb{R}$. Then show that $T_a f * g = f * T_a g = T_a(f * g)$.
- (2) Define a function of bounded variation. Let $f \in L^1$ and g is of bounded variation then show that f * g is of bounded variation and $V(f * g) \le ||f||_1 V(g)$.

OR

- (1) If $f \in L^1$ and $g \in L^p$, $1 \le p \le \infty$. Then $f^* g \in L^1$ and $||f^* g|| \le ||f||_1 ||g||_p$.
- (2) Define algebra homomorphism. Let $\gamma_N : L^1 \to C$ by $\gamma_N(f) = f(N)$. Show that for any non trivial continuous complex algebra homomorphism of L^1 there exist a unique integer N such that $\gamma = \gamma_N$.
- (B) Attempt any **four** :
 - (1) Which of the following is true for $(L^1(\mathbb{T}), +, *)$, where * is a convolution operation.

 $\text{Let } \left\{K_n\right\}_{n=1}^{\infty} \text{be any approximate identity in } L^1 \text{ and } f \in C \text{ then } \lim_{n \to \infty} \ \left\|K_n * f \cdot f\right\|_{\infty} = .$

- (a) 1 (b) 0
- (c) -1 (d) None of the above

MM-155

P.T.O.

4

(2) Let γ be a complex algebra homomorphism on L¹ and

$$f(x) = \begin{cases} x & \text{if } x^2 \in \mathbb{Q} \cap [-\pi,\pi] \\ 0 & \text{if } x^2 \in \mathbb{Q}^C \cap [-\pi,\pi] \end{cases} \text{ then.}$$
(a) $\gamma(f) = 0$ (b) $\gamma(f^2) \neq 0$
(c) $\gamma(f - f^2) \neq 0$ (d) None of the above

- (3) Which of the following is false for (L¹(T), +, *), where * is a convolution operation.
 - (a) $(L^1(\mathbb{T}), +, *)$ has an approximate identity.
 - (b) $(L^1(\mathbb{T}), +, *)$ has a zero divisor.
 - (c) $(L^1(\mathbb{T}), +, *)$ is a vector space.
 - (d) None of the above
- (4) Define approximate identity in $(L^1\mathbb{T}), +, *)$.
- (5) Give an example of approximate identity.
- (6) Give an example of Complex algebra homomorphism of L^1 .

3. (A) Answer the following :

- (1) Define Cesaro summable series. If $c_n = o(\frac{l}{n})$ and $\sigma_N \to l$, then show that $S_N \to l$.
- (2) Show that summable series is Cesaro summable.

OR

(1) Let F_n be Fejer kernels. Show that F_N is an approximate identity.

(2) Let
$$D_n$$
 be Dirichlet kernels. Show that $||D_N||_1 = \frac{4}{\pi^2} \log N + O(1)$.

- (B) Attempt any three :
 - (1) True/False : Let $a_n = (-1)^n$. Then a_n is Cesaro summable.
 - (2) Give a relation between Cesaro summability and summability.
 - (3) Give an example of sequence which is Cesaro summable but not summable.
 - (4) Write any one property of Dirichlet kernel.
 - (5) Write any one property of Fejer Kernel.

MM-155

3

- 4. (A) Answer the following :
 - (a) Show that Trigonometric polynomials are dense in L^p , $1 \le p \le \infty$.
 - (b) State and prove Localization principle.

OR

- (a) Show that Fourier series converges uniformly if and only if $a_n = o(\frac{1}{n})$.
- (b) State and prove Dini's test.
- (B) Attempt any three :
 - (1) Define a Sequence of bounded variation.
 - (2) Give an example of sequence of bounded variation.
 - (3) State Jordan's Theorem.
 - (4) State Taibleson's theorem.
 - (5) State Uniform boundedness principle.