\qquad

ML-128

March-2019
M.Sc.., Sem.-IV

507 : Physics
(Nuclear Physics - II \& Advanced Quantum Mechanics - II)

Time : 2:30 Hours]

[Max. Marks: 70
Instructions : Symbols have their usual meanings.

1. (a) (i) Discuss types of nuclear reactions with necessary example and state the
classification of energy.
(ii) State the names of conservation laws and derive the amplitude $\mathrm{A}_{\mathrm{E}}=\frac{\psi(\mathrm{r})}{2 \pi}$ $\left[\frac{i \hbar}{\left(E-E_{0}+i \gamma / 2\right)}\right]$ in case of Breit Weigner dispersion.

OR

(i) What do you mean by compound nucleus and derive the relation between Probability of decay of compound nucleus $\mathrm{G}_{\mathrm{c}}(x)$ and scattering crosssection of formation of compound nucleus $\sigma_{c}(x)$.
(ii) Discuss Harmonic oscillator in detail.
(b) Write short answer: (any four)
(1) State the limitation of liquid drop model.
(2) Square well potential has \qquad edge while harmonic oscillator potential has \qquad edge.
(3) What do you mean by pick up reaction?
(4) In case of vibration state in collective model, when $\lambda=1$ give the names of different modes observed.
(5) State the discrepancies in case of the magnetic moment of nuclei.
(6) What is the total transparency when $\mathrm{k}<\mathrm{K}$ in terms of E and V_{0} ?
2. (a) (i) Write briefly fundamental interactions and nucleonium [nucleon-antinucleon system] in detail.
(ii) Explain Parity and G-parity in detail.

OR

(i) Explain Isospin and time reversal in detail.
(ii) Write short note on CP -violation in K° meson decay.
(b) Write short answer: (any four)
(1) Define charge conjugate.
(2) What is the spin of Fermions particle ?
(3) State the electric charges of three quarks.
(4) State the CPT theorem.
(5) What is the strangeness value of Σ-Hyperons ?
(6) Intrinsic parity of BOSON is \qquad and that of FERMIONS \qquad .
3. (a) (i) For $s=1$, find out the matrix representations of J_{x}, J_{y} and J_{z}.
(ii) For spin state $\mathrm{s}=1$ find out $\mathrm{S}_{x}{ }^{\prime}$ and $\mathrm{S}_{\mathrm{y}}{ }^{\prime}$. The new basis states are

$$
|\mathrm{a}\rangle=\frac{-1}{\sqrt{2}}[|1\rangle-|-1\rangle],|\mathrm{b}\rangle=\frac{-\mathrm{i}}{\sqrt{2}}[|1\rangle+|-1\rangle] \text { and }|\mathrm{c}\rangle=0
$$

OR

(i) What is the wave function for $\mathrm{s}=1 / 2$ if the spin component in the direction of the unit vector ' n ' has value $(1 / 2) \hbar$? [Given : Evidently ($\vec{s} . \vec{n}) \chi=(\hbar / 2) \chi$]
(ii) Define Pauli's spin matrices σ_{x}, σ_{y}, and σ_{z}. Show that
(1) $\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}=3$
(2) $\sigma_{+} \sigma_{-}=2\left(1+\sigma_{z}\right)$
(3) $\left[\mathrm{S}_{x}, \mathrm{~S}_{\mathrm{y}}\right]=\hbar \mathrm{S}_{\mathrm{z}}$
(b) Write short answer : (any three)
(1) What will be the value of α_{+}^{2} ?
(2) What will be the value of $\left[\mathrm{S}^{2}, \mathrm{~S}_{\mathrm{z}}\right]$?
(3) What is the unit of Pauli's spin matrices σ_{x} ?
(4) For $\mathrm{s}=3$, how many spin states are there ?
(5) When lowering operator J_{-}is operated on $|j+2, m+3\rangle$, then what will be the new states and eigen value?
4. (a) (i) Obtain Klein-Gorden equation. Using probability density and current density show that Klein-Gorden equation is unphysical for relativistic particle.
(ii) State the expression for energy of a charged particle obeying Klein-Gorden equation in a Coulomb potential. Explain the significance of the different terms.

OR

(i) Show that the Dirac's equation automatically endows the hypothetical spinning motion of the electron.
(ii) Dirac preferred a $1^{\text {st }}$ order equation both in time and space co-ordinates. Why ? Also explain why the dimension of the Dirac's matrices has to be even?
(b) Write short answer : (any three)
(1) What are negative energy states? What is hole?
(2) Show that $\alpha_{x} \alpha_{y}+\alpha_{y} \alpha_{x}=0$
(3) Give the physical interpretation of Dirac's matrices.
(4) Prove that $\left[\alpha_{y} \alpha_{z}, \alpha_{y}\right]=2 \alpha_{y}$.
(5) Distinguish the Klein-Gorden and Dirac's equations.

