Seat No. : _____

ML-130

March-2019

M.Sc., Sem.-IV

507 : Mathematics (Functional Analysis II) (Old)

Time : 2:30 Hours]

- 1. (A) Answer the following questions :
 - (1) If T is a positive operator on H, then prove that I + T is non-singular.
 - (2) Prove that $(T + S)^* = T^* + S^*$ and $(TS)^* = S^*T^*$ for each T, S in B(H).

OR

- (1) Let H be a Hilbert space, and let f be an arbitrary functional in H* then prove that there is a unique vector y in H such that f(x) = (x, y) for all x in H.
- (2) Let $A \in B(H)$ such that (Ax, x) = 0 for all x in H, prove that A = 0.
- (B) Attempt any **Four** :
 - (1) Prove that the mapping $y \to f_y$ is norm-preserving.
 - (2) Define Hilbert space. Give an example of an incomplete inner product space.
 - (3) Define Isometry. Prove that every isometry is one one.
 - (4) Give an example of a normal operator that is not unitary.
 - (5) Prove or disprove: The product of two self-adjoint operators is self-adjoint.
 - (6) Give a normal operator that is not self-adjoint.
- 2. (A) Answer the following questions :
 - (1) Let $T \in B(H)$. Show that T is normal iff $||T^*x|| = ||Tx||$ for each $x \in H$.
 - (2) If P and Q are projections on M and N respectively, show that P + Q is a projection iff PQ = 0.

OR

- (1) Show that the unitary operators on H form a group.
- (2) If P is a projection on H with range M. Show that $x \in M$ iff P(x) = x iff ||P(x)|| = ||x||.

1

14

[Max. Marks : 70

4

- (B) Attempt any Four :
 - (1) Give an example of a projection on \mathbb{R}^3 .
 - (2) Give an example of an operator on \mathbb{R}^2 that does not have eigen value.
 - (3) Define positive operator. Show that sum of two positive operator is positive.
 - (4) What is the dimension of \mathbb{C}^2 over \mathbb{R} ?
 - (5) Give a basis of \mathbb{R}^n over \mathbb{R} .
- 3. (A) Answer the following questions :
 - (1) Define the approximate Eigen spectrum $\sigma_a(A)$. State and prove a characterization of approximate Eigen values.
 - (2) If X is a Banach space then prove that the set G of all the invertible elements in BL(X) is open.

OR

- (1) State and prove Gelfand-Mazur theorem.
- (2) If X is a Banach space then prove that the set S of all the singular elements in BL(X) is closed.
- (B) Attempt any **Three** :
 - (1) Prove or disprove : Every operator on \mathbb{R}^3 has an eigen-value.
 - (2) Find the matrix corresponding to the operator T : (x, y) = (x + 2y, 3x + 4y).
 - (3) Consider the operator T : (x, y) = (x + 2y, 2x + y). Is T invertible ? Justify.
 - (4) Can we have an operator $T \in B(H)$ such that $\sigma(T) = \mathbb{C}$?
 - (5) Define the spectral radius $r_a(T)$.
- 4. (A) Answer the following questions :
 - (1) Prove that every functional $f \in X^*$ is a compact map.
 - (2) If A is a compact operator on an infinite dimensional normed linear space X then prove that $0 \in \sigma_a(A)$.

OR

- (1) Prove that $F \in BL(X, Y)$ is compact if and only if for every bounded sequence (x_n) in X, $(F(x_n))$ has a subsequence which converges in Y.
- (2) If A, B \in CL(X, Y), prove that A + B and $\alpha A \in$ CL(X, Y). (Here α is a scalar.)
- (B) Attempt any **Three** :
 - (1) Prove that very 2×2 real matrix determines a compact map on \mathbb{R}^2 .
 - (2) True or false : The right shift operator on the Hilbert space l^2 is compact.
 - (3) Find an operator A such that $\sigma(A) = \{i\}$.
 - (4) Give an example of a bounded linear map that is not compact.
 - (5) Can we find a compact operator A such that $\sigma(A) = \mathbb{C}$? Explain.

14

3

14

Seat No. : _____

ML-130

March-2019

M.Sc., Sem.-IV 507 : Mathematics (Differential Geometry) (New)

Time : 2:30 Hours]

1.

At what angles do the hyperbolas (A) (i) $xy = c_1, x^2 - y^2 = c_2$ intersect ?

(ii) Show that the curvature and torsion of the helix $x = \cos t$, $y = \sin t$, z = t are constant.

OR

- Show that if the tangents to a curve are parallel to a certain plane, then the (i) curve is a plane curve.
- Find the length of the segment $0 \le t \le 2\pi$ of the cycloid $x = 2(t \sin t)$, (ii) $y = 2(1 - \cos t)$.

(B) Do any **four** :

- Sketch (roughly) a family of curves and its envelope. (i)
- Sketch (roughly) a tractrix. (ii)
- Write down (without proof) the Frenet formulas. (iii)
- Write down (without proof) the curvature of a circle of radius R. (iv)
- Give (without proof) the equation of a parabola of the form $y = x^2 + ax + b$ (v) which is tangent to the circle $x^2 + y^2 = 1$ at the point (0, -1).
- (vi) Give a parametric equation of a circle with centre (1, 2) and radius 3.
- Show that all the tangent planes to the surface $z = x f\left(\frac{y}{x}\right)$ pass through the 2. (A) (i) origin of the co-ordinates. 7
 - Find the equation of the osculating paraboloid to an ellipsoid $\frac{x^2}{2^2} + \frac{y^2}{3^2} + \frac{z^2}{5^2} = 1$ (ii) at the point (0, 0, 5). 7

OR

3

- Show that the surfaces $x^2 + y^2 + z^2 = ax$, $x^2 + y^2 + z^2 = bx$, $x^2 + y^2 + z^2 = cx$ (i) intersect at right angles.
- Make up the equation of the surface formed by straight lines passing (ii) through a point p = (a, b, c) and intersecting a curve r = r(u) (conical surface).

[Max. Marks: 70

4

7

- (B) Do any four :
 - (i) Give the osculating paraboloid of the surface $z = x^2 + y^2 + y^3$ at (0, 0). (Do not prove)
 - (ii) Give the tangent plane to $z = x^2 + y^3$ at (0, 0). (Do not prove)
 - (iii) Give a parametrization of the unit sphere. (Do not prove)
 - (iv) Sketch (roughly) a cylindrical surface.
 - (v) True or false ? There are elliptic points on a closed surface. (Do not prove)
 - (vi) True or false ? If a smooth surface has only one point in common with a plane, then the plane is the tangent plane to the surface at that point. (Do not prove)

3. (A) (i) Find the area of the quadrilateral bounded by u = 0, u = 1, v = 0, v = 1 on the helicoid $x = u \cos v$, $y = u \sin v$, z = v.

(ii) Find asymptotic lines on the catenoid $x = \cos h u \cos v, y = \cos h u \sin v, z = u$

OR

- (i) Find the first fundamental form of the surface of revolution $x = \phi(u) \cos v$, $y = \phi(u) \sin v$, $z = \chi(u)$.
- (ii) Prove that the co-ordinate u-curves, v-curves on a translation surface r(u, v) = U(u) + V(v) are conjugate.
- (B) Do any three :
 - (i) Sketch (roughly) a loxodrome on a sphere.
 - (ii) Sketch (roughly) a surface of constant Gaussian curvature = -2.
 - (iii) State (without proof) the Euler formula.
 - (iv) Sketch (roughly) the Dupin indicatrix at an elliptic point.
 - (v) Give an example of a non-identity conformal mapping from the xy-plane to itself.
- 4. (A) (i) Prove that conical surfaces are locally isometric to a plane. 7
 - (ii) Show that an asymptotic geodesic line is a straight line.

OR

- (i) Show that if a geodesic line is a line of curvature, then it lies in a plane.
- (ii) Prove that the sum of the angles of a geodetic triangle on a surface of positive Gaussian curvature is greater than π .
- (B) Do any three :
 - (i) State (without proof) the Gauss-Bonnet theorem for closed surfaces.

4

- (ii) What is the Euler characteristics of a torus ? (Do not prove)
- (iii) State (without proof) the extremal property of geodesics.
- (iv) Describe (without proof) the geodesics on a sphere.
- (v) If a curve r = r(t) lies on a surface, give a formula for its geodesic curvature. (Do not prove)

7

7

3

3