$\qquad$

## ML-130

March-2019
M.Sc., Sem.-IV

## 507 : Mathematics

(Functional Analysis II)
(Old)
Time : 2:30 Hours]
[Max. Marks: 70

1. (A) Answer the following questions:
(1) If T is a positive operator on H , then prove that $\mathrm{I}+\mathrm{T}$ is non-singular.
(2) Prove that $(T+S)^{*}=T^{*}+S^{*}$ and $(T S)^{*}=S^{*} T^{*}$ for each $T, S$ in $B(H)$.

## OR

(1) Let H be a Hilbert space, and let f be an arbitrary functional in $\mathrm{H}^{*}$ then prove that there is a unique vector y in H such that $\mathrm{f}(x)=(x, y)$ for all $x$ in H.
(2) Let $\mathrm{A} \in \mathrm{B}(\mathrm{H})$ such that $(\mathrm{A} x, x)=0$ for all $x$ in H , prove that $\mathrm{A}=0$.
(B) Attempt any Four :
(1) Prove that the mapping $y \rightarrow f_{y}$ is norm-preserving.
(2) Define Hilbert space. Give an example of an incomplete inner product space.
(3) Define Isometry. Prove that every isometry is one one.
(4) Give an example of a normal operator that is not unitary.
(5) Prove or disprove: The product of two self-adjoint operators is self-adjoint.
(6) Give a normal operator that is not self-adjoint.
2. (A) Answer the following questions :
(1) Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$. Show that T is normal iff $\left\|\mathrm{T}^{*} x\right\|=\|\mathrm{T} x\|$ for each $x \in \mathrm{H}$.
(2) If P and Q are projections on M and N respectively, show that $\mathrm{P}+\mathrm{Q}$ is a projection iff $\mathrm{PQ}=0$.

## OR

(1) Show that the unitary operators on H form a group.
(2) If P is a projection on H with range M . Show that $x \in \mathrm{M}$ iff $\mathrm{P}(x)=x$ iff $\|\mathrm{P}(x)\|=\|x\|$.
(B) Attempt any Four :
(1) Give an example of a projection on $\mathbb{R}^{3}$.
(2) Give an example of an operator on $\mathbb{R}^{2}$ that does not have eigen value.
(3) Define positive operator. Show that sum of two positive operator is positive.
(4) What is the dimension of $\mathbb{C}^{2}$ over $\mathbb{R}$ ?
(5) Give a basis of $\mathbb{R}^{n}$ over $\mathbb{R}$.
3. (A) Answer the following questions :
(1) Define the approximate Eigen spectrum $\sigma_{a}(A)$. State and prove a characterization of approximate Eigen values.
(2) If X is a Banach space then prove that the set G of all the invertible elements in $\mathrm{BL}(\mathrm{X})$ is open.

## OR

(1) State and prove Gelfand-Mazur theorem.
(2) If $X$ is a Banach space then prove that the set $S$ of all the singular elements in $\mathrm{BL}(\mathrm{X})$ is closed.
(B) Attempt any Three :
(1) Prove or disprove : Every operator on $\mathbb{R}^{3}$ has an eigen-value.
(2) Find the matrix corresponding to the operator $\mathrm{T}:(x, y)=(x+2 \mathrm{y}, 3 \mathrm{x}+4 \mathrm{y})$.
(3) Consider the operator $\mathrm{T}:(x, y)=(x+2 y, 2 x+y)$. Is T invertible? Justify.
(4) Can we have an operator $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ such that $\sigma(\mathrm{T})=\mathbb{C}$ ?
(5) Define the spectral radius $r_{a}(T)$.
4. (A) Answer the following questions :
(1) Prove that every functional $\mathrm{f} \in \mathrm{X}^{*}$ is a compact map.
(2) If A is a compact operator on an infinite dimensional normed linear space X then prove that $0 \in \sigma_{a}(A)$.

## OR

(1) Prove that $\mathrm{F} \in \mathrm{BL}(\mathrm{X}, \mathrm{Y})$ is compact if and only if for every bounded sequence $\left(x_{\mathrm{n}}\right)$ in $\mathrm{X},\left(\mathrm{F}\left(x_{\mathrm{n}}\right)\right)$ has a subsequence which converges in Y .
(2) If $\mathrm{A}, \mathrm{B} \in \mathrm{CL}(\mathrm{X}, \mathrm{Y})$, prove that $\mathrm{A}+\mathrm{B}$ and $\alpha \mathrm{A} \in \mathrm{CL}(\mathrm{X}, \mathrm{Y})$. (Here $\alpha$ is a scalar.)
(B) Attempt any Three :
(1) Prove that very $2 \times 2$ real matrix determines a compact map on $\mathbb{R}^{2}$.
(2) True or false : The right shift operator on the Hilbert space $l^{2}$ is compact.
(3) Find an operator $A$ such that $\sigma(\mathrm{A})=\{\mathrm{i}\}$.
(4) Give an example of a bounded linear map that is not compact.
(5) Can we find a compact operator A such that $\sigma(\mathrm{A})=\mathbb{C}$ ? Explain.
$\qquad$

## ML-130

March-2019
M.Sc., Sem.-IV

## 507 : Mathematics

(Differential Geometry)
(New)
Time : 2:30 Hours]
[Max. Marks: 70

1. (A) (i) At what angles do the hyperbolas
$x \mathrm{y}=\mathrm{c}_{1}, x^{2}-\mathrm{y}^{2}=\mathrm{c}_{2}$ intersect ?
(ii) Show that the curvature and torsion of the helix $x=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}, \mathrm{z}=\mathrm{t}$ are constant.

## OR

(i) Show that if the tangents to a curve are parallel to a certain plane, then the curve is a plane curve.
(ii) Find the length of the segment $0 \leq \mathrm{t} \leq 2 \pi$ of the cycloid $x=2(\mathrm{t}-\sin \mathrm{t})$, $y=2(1-\cos t)$.
(B) Do any four :
(i) Sketch (roughly) a family of curves and its envelope.
(ii) Sketch (roughly) a tractrix.
(iii) Write down (without proof) the Frenet formulas.
(iv) Write down (without proof) the curvature of a circle of radius R.
(v) Give (without proof) the equation of a parabola of the form $\mathrm{y}=x^{2}+\mathrm{ax}+\mathrm{b}$ which is tangent to the circle $x^{2}+y^{2}=1$ at the point $(0,-1)$.
(vi) Give a parametric equation of a circle with centre ( 1,2 ) and radius 3.
2. (A) (i) Show that all the tangent planes to the surface $\mathrm{z}=x \mathrm{f}\left(\frac{\mathrm{y}}{x}\right)$ pass through the origin of the co-ordinates.
(ii) Find the equation of the osculating paraboloid to an ellipsoid $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{5^{2}}=1$ at the point $(0,0,5)$.

## OR

(i) Show that the surfaces $x^{2}+y^{2}+z^{2}=a x, x^{2}+y^{2}+z^{2}=b x, x^{2}+y^{2}+z^{2}=c x$ intersect at right angles.
(ii) Make up the equation of the surface formed by straight lines passing through a point $\mathrm{p}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and intersecting a curve $\mathrm{r}=\mathrm{r}(\mathrm{u})$ (conical surface).
(B) Do any four :
(i) Give the osculating paraboloid of the surface $\mathrm{z}=x^{2}+\mathrm{y}^{2}+\mathrm{y}^{3}$ at (0, 0). (Do not prove)
(ii) Give the tangent plane to $\mathrm{z}=x^{2}+\mathrm{y}^{3}$ at ( 0,0 ). (Do not prove)
(iii) Give a parametrization of the unit sphere. (Do not prove)
(iv) Sketch (roughly) a cylindrical surface.
(v) True or false ? There are elliptic points on a closed surface. (Do not prove)
(vi) True or false ? If a smooth surface has only one point in common with a plane, then the plane is the tangent plane to the surface at that point. (Do not prove)
3. (A) (i) Find the area of the quadrilateral bounded by $u=0, u=1, v=0, v=1$ on the helicoid $x=\mathrm{u} \cos \mathrm{v}, \mathrm{y}=\mathrm{u} \sin \mathrm{v}, \mathrm{z}=\mathrm{v}$.
(ii) Find asymptotic lines on the catenoid $x=\cosh \mathrm{u} \cos \mathrm{v}, \mathrm{y}=\cos \mathrm{h} \mathrm{u} \sin \mathrm{v}, \mathrm{z}=\mathrm{u}$

OR
(i) Find the first fundamental form of the surface of revolution $x=\phi(u) \cos v$, $\mathrm{y}=\phi(\mathrm{u}) \sin \mathrm{v}, \mathrm{z}=\chi(\mathrm{u})$.
(ii) Prove that the co-ordinate u-curves, v-curves on a translation surface $r(u, v)=U(u)+V(v)$ are conjugate.
(B) Do any three :
(i) Sketch (roughly) a loxodrome on a sphere.
(ii) Sketch (roughly) a surface of constant Gaussian curvature $=-2$.
(iii) State (without proof) the Euler formula.
(iv) Sketch (roughly) the Dupin indicatrix at an elliptic point.
(v) Give an example of a non-identity conformal mapping from the xy-plane to itself.
4. (A) (i) Prove that conical surfaces are locally isometric to a plane.
(ii) Show that an asymptotic geodesic line is a straight line.

## OR

(i) Show that if a geodesic line is a line of curvature, then it lies in a plane.
(ii) Prove that the sum of the angles of a geodetic triangle on a surface of positive Gaussian curvature is greater than $\pi$.
(B) Do any three :
(i) State (without proof) the Gauss-Bonnet theorem for closed surfaces.
(ii) What is the Euler characteristics of a torus ? (Do not prove)
(iii) State (without proof) the extremal property of geodesics.
(iv) Describe (without proof) the geodesics on a sphere.
(v) If a curve $r=r(t)$ lies on a surface, give a formula for its geodesic curvature. (Do not prove)

