\qquad

AC-155

April-2019

M.Sc., Sem.-II

408 : Mathematics
(Real Analysis)
(New)
Time : 2:30 Hours]
[Max. Marks : 70

1. (A) (i) State (without proof) the following theorems :
(a) Lebesgue's theorem
(b) Egorov's theorem
(c) Luzin's theorem
(ii) Let $\mathrm{f}(x)=2 \sin (\pi x)$ be defined on [0, 1]. Find $\mathrm{B}_{3}(x)$, the Bernstein polynomial of degree 3 for the function $\mathrm{f}(x)$.

OR
(i) \quad Let $\mathrm{f}(x)= \begin{cases}1, & x \in[0,1) \\ 0, & x \in[1,2]\end{cases}$

Find a continuous function $\mathrm{g}(\mathrm{x})$ defined on $\mathrm{E}=[0,2]$ such that $\mathrm{mE}(\mathrm{f} \neq \mathrm{g})<\frac{1}{3}$.
(ii) \quad Let $\mathrm{f}_{\mathrm{n}}(x)= \begin{cases}1, & x \in\left[0, \frac{1}{\mathrm{n}}\right] \\ 0, & x \in\left(\frac{1}{\mathrm{n}}, 1\right]\end{cases}$

Show that the sequence $\mathrm{f}_{1}(x), \mathrm{f}_{2}(x), \mathrm{f}_{3}(x) \ldots$ converges in measure to the zero function, i.e., $\mathrm{f}_{\mathrm{n}}(x) \Rightarrow 0$.
(B) Answer any four :
(i) Show that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
(ii) Write $\mathrm{f}(x)=\sin x \cos x$ as a trigonometric polynomial.
(iii) Let $\mathrm{f}(x)= \begin{cases}1, & x \in[-1,0) \\ 0, & x \in[0,1]\end{cases}$

Show that there is no polynomial $\mathrm{p}(x)$ defined on $\mathrm{E}=[-1,1]$ such that m E $(\mathrm{f} \neq \mathrm{p})<\frac{1}{4}$.
(iv) Let $\mathrm{f}(x)=|x|, x \in[-1,1]$. Find a polynomial $\mathrm{p}(x)$ such that $|\mathrm{f}(x)-\mathrm{p}(x)|<\frac{1}{2}$, $x \in[-1,1]$.
(v) Find n such that $\frac{1}{2^{\mathrm{n}}}+\frac{1}{2^{\mathrm{n}+1}}+\frac{1}{2^{\mathrm{n}+2}}+\ldots<\frac{1}{10}$.
(vi) State the Weierstrass Theorem. (Do not prove)
2. (A) (i) Define a square summable function $\mathrm{f}(x)$ on $\mathrm{E}=[\mathrm{a}, \mathrm{b}]$. Show that every square $-\operatorname{summable}$ function $\mathrm{f}(x)$ is summable, i.e., show that $\mathrm{L}_{2} \subset \mathrm{~L}_{1}$.

Let $\mathrm{f}(x)=x$ be defined on $[0,1]$. Find the norm $\|\mathrm{f}\|$, where f is considered as an element of $L_{2}[0,1]$.
(ii) Define the space L_{2}.

Is the sequence $\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}, \ldots\right)$ in L_{2} ?
Show that if $x \in \mathrm{~L}_{2}$ and $\mathrm{y} \in \mathrm{L}_{2}$, then $x+\mathrm{y} \in \mathrm{L}_{2}$.

OR

(i) State (without proof) Holder's inequality in Lp.

State (without proof) Minkowski's inequality in Lp.
State (without proof) Cauchy - Bunyakovski - Schwarz inequality in L_{2}.
(ii) Let $\mathrm{f}(x)= \begin{cases}1, & x \in[0,1) \\ 0, & x \in[1,2]\end{cases}$

Show that $\mathrm{f}(x) \in \mathrm{L}_{2}$. Find a polynomial $\mathrm{p}(x)$ so that $\int_{0}^{2}(\mathrm{f}(x)-\mathrm{p}(x))^{2} \mathrm{~d} x<\frac{3}{2}$.
(B) Do any four :
(i) Let $p=3$. Find q, the index conjugate to p.
(ii) True or false ? The class of continuous functions is everywhere dense in $L_{2}[a, b]$. (do not prove).
(iii) Consider $x \in \mathrm{~L}_{2}$, where $x=\left(1, \frac{1}{2}, \frac{1}{4}, \ldots \frac{1}{2^{\mathrm{n}}}, \ldots\right)$, find $\|x\|$.
(iv) Let $x=(1,0,0,0,0, \ldots)$. Is $x \in 1_{\mathrm{p}}$?
(v) True or False ? The class of constant functions is everywhere dense in $L_{2}[\mathrm{a}, \mathrm{b}]$. (do not prove).
(vi) Let $\mathrm{a}_{\mathrm{p}}=\int_{0}^{1} x^{\mathrm{p}} \mathrm{d} x, \mathrm{p} \geq 1$.

Find $\lim _{p \rightarrow \infty} \sqrt[p]{a_{p}}$
3. (A) (i) Suppose $\mathrm{f}(x)$ is an increasing function defined on [a, b]. State (without proof) a theorem describing the set of points of discontinuity of $\mathrm{f}(x)$.
Let $\mathrm{f}(x)= \begin{cases}x, & x \in[0,1) \\ x+1, & x \in[1,2]\end{cases}$
Sketch (roughly) the graph of $\mathrm{f}(x)$. Find $\mathrm{s}(x)$, the Saltus function of $\mathrm{f}(x)$.
(ii) Suppose $\mathrm{f}(x)$ is an increasing function defined on [a, b]. State (without proof) a theorem describing the set of points at which $\mathrm{f}(x)$ has a finite derivative $f^{\prime}(x)$.
Let $\mathrm{f}(x)= \begin{cases}x, & x \in[0,1) \\ x+1, & x \in[1,2]\end{cases}$
Find the set of points at which $\mathrm{f}(x)$ has a finite derivative $f^{\prime}(x)$.

OR

(i) Define a function $f(x)$ of finite variation on $[\mathrm{a}, \mathrm{b}]$. Show that a function $f(x)$ defined on $[\mathrm{a}, \mathrm{b}]$ which satisfies a Lipschitz condition is of finite variation.
Shaw that the sum of two functions of finite variation is also of finite variation.
(ii) Define an absolutely continuous function $f(x)$ on $[\mathrm{a}, \mathrm{b}]$. Show that if a function $f(x)$ defined on $[\mathrm{a}, \mathrm{b}]$ satisfies a Lipschitz condition, then $f(x)$ is absolutely continuous.
Show that the sum of two absolutely continuous functions is absolutely continuous.
(B) Do any three :
(i) True or false ? Every absolutely continuous function has finite variation. (do not prove)
(ii) Let $\mathrm{f}(x)=|x|, x \in[-1,1]$. Write $\mathrm{f}(x)$ as a difference of two increasing functions.
(iii) True or false ? Every continuous function is absolutely continuous. (do not prove)
(iv) True or false ? Every absolutely continuous function is continuous. (do not prove)
(v) True or false ? If the derivative of an absolutely continuous function $\mathrm{f}(x)$ is zero almost everywhere, then the function $\mathrm{f}(x)$ is constant. (do not prove).
4. (A) (i) State and prove the Riemann - Lebesgue theorem.
(ii) State (without proof) a necessary and sufficient condition for a function $\phi(x)$ to be the indefinite integral of a summable function.
Show that every point of continuity of a summable function $f(t)$ is a Lebesgue point of $f(t)$.

OR

(i) Find the Fourier series for

$$
\mathrm{f}(\mathrm{t})=\frac{\mathrm{t}^{2}}{4} \quad, \quad(-\pi \leq \mathrm{t} \leq \pi)
$$

Find the sum $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$
(ii) Find the sum $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\ldots$
(B) Do any three :
(i) Define an even function on $[-\pi, \pi]$.
(ii) Find b_{τ} (the Fourier coefficient) of

$$
\mathrm{f}(x)=x^{2} \text { defined on }[-\pi, \pi] .(\text { do not prove })
$$

(iii) Let $\mathrm{f}(x)=\left\{\begin{array}{rl}1 & , \quad x \in[-\pi, 1) \\ 0 & , \\ -1 & x=0 \\ -1 \in(0, \pi]\end{array}\right.$

Find $f_{r}^{\prime}(0)$.
(iv) Find $\int_{-\pi}^{\pi} \cos (2 x) \sin (3 x) \mathrm{d} x$.
(v) Sketch (roughly) the function $\mathrm{f}(x)=\sin 2 x,-\pi \leq x \leq \pi$.

