Seat No. : \qquad
AD-144
April-2019
M.Sc., Sem.-II

409 : Mathematics
(Complex Analysis-II)
Time : 2:30 Hours]
[Max. Marks : 70

1. (a) (i) If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ then that series must be uniformly convergent in the closed disk $\left|\mathrm{z}-\mathrm{z}_{0}\right| \leq \mathrm{R}_{1}$, where $\mathrm{R}_{1}=\left|\mathrm{z}_{1}-\mathrm{z}_{0}\right|$.
(ii) Show that the sum of the series
$x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)}+\frac{x^{2}}{\left(1+x^{2}\right)^{3}}+\ldots \ldots$.
is discontinuous at $x=0$. Also, Obtain the Laurent series expansion and radius of convergence of the function $\operatorname{Ln}\left[\frac{\mathrm{Z}}{\mathrm{z}-1}\right], \mathrm{z}_{0}=0$ valid in the region $|\mathrm{z}|>1$.

OR

(b) (i) Let C denote any contour interior to the circle of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, and let $g(z)$ be any function that is continuous on C.

Then show that the series formed by multiplying each term of the power series by $g(z)$ can be integrated term by term over C.
(ii) If $|\mathrm{w}|<1 / 2$, Show that
(a) $|\operatorname{Ln}(1-\mathrm{w})|<2 \mid$ w \mid and
(b) $\quad|\operatorname{Ln}(1-\mathrm{w})+\mathrm{w}| \leq|\mathrm{w}|^{2}$.
(c) Attempt any FOUR :
(i) If f is analytic everywhere in the finite complex plane except at z_{0} then the Laurent's series expansion is valid in the disk \qquad .
(ii) The radius of convergence of the series $\sum_{\mathrm{n}=0}^{\infty}\left(\frac{\mathrm{n} \sqrt{2}+\mathrm{i}}{1+2 \mathrm{in}}\right)(\mathrm{z})^{\mathrm{n}}$ is \qquad .
(iii) The region of convergence of $f(z)=1 /\left(e^{z}-1\right)$ about $z_{0}=0$ is \qquad .
(iv) For what value of z, does the series $\sum_{n=0}^{\infty} \frac{1}{\left(1+z^{2}\right)^{n}}$ converge, and find its sum.
(v) Find Taylor's series expansion of $f(z)=1 /\left[(z+1)(z+2)^{2}\right]$ about the point $\mathrm{z}_{0}=1$.
(vi) State the definition of uniform convergence of power series.
2. (a) (i) State and prove Cauchy residue theorem.
(ii) Discuss the singularity of the function $f(z)=\frac{\left(z^{2}-1\right)(z-2)^{3}}{(\sin \pi z)^{3}}$ in the extended complex plane.

OR

(b) (i) Suppose that Z_{o} is an essential singularity of function f and let w_{o} be any complex number. Then prove that for any positive ε, the inequality $\left|f(z)-w_{0}\right|<\varepsilon$ is satisfied at some point z in each deleted neighbourhood $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta$ of z_{0}.
(ii) Find the residue of the function $f(z)=\cos \left(\frac{z^{2}+6 z+5}{z+2}\right)$ at $z=-2$.
(c) Attempt any FOUR :
(i) An analytic function is bounded in some neighbourhood of a removable singular point. (True/False)
(ii) If $f(z)$ be an entire function and not a constant. Then the function $f(z)$ has
\qquad or has \qquad singularity at $\mathrm{z}=\infty$.
(iii) Classify the singularity of the $f(z)=\frac{\operatorname{Ln}\left(1+z^{m}\right)}{z^{n}}, m$ and n are positive integers in the finite complex plane.
(iv) Classify the singular point $z=0$ of the function $f(z)=\frac{e^{z}}{z-\sin z}$.
(v) Give a simple example of a function which has a non-removable singularity at $\mathrm{z}=0$ and whose residue at that point is zero.
(vi) Find the residue of the function $h(z)=\frac{f^{\prime}(z)}{f(z)}$ at $\mathrm{z}=$ a if $\mathrm{z}=\mathrm{a}$ is a pole of order n of $f(z)$.
3. (a) (i) Show that if function is even then Cauchy principal value of the integral is equal to improper integral and evaluate the integral $I=\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}},(a>0) . \mathbf{1 4}$
(ii) Evaluate the integral $\mathrm{I}=\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$.

OR

(b) (i) Show that if improper integral exists then Cauchy principal value of the integral exists but not vice versa.
(ii) Evaluate the integral $I=\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} \mathrm{~d} \theta$.
(c) Attempt any THREE :
(i) State Jordan's inequality.
(ii) The value if the integral $I=\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}},(a>b>0)$ is \qquad .
(iii) The residue at all the singular points of $f(z)=\frac{z^{2}}{\left(z^{n}-1\right)}, n$ is any positive integer is \qquad .
(iv) The value if the integral $I=\oint_{C} \frac{d z}{z^{4}+1} C:|z-1|=1$ is \qquad .
4. (a) (i) Suppose that function $\mathrm{f}(\mathrm{z})$ has a simple pole at a point $\mathrm{z}=x_{0}$ on the real axis, with Laurent series expansion in the punctured disk $0<\left|\mathrm{z}-x_{0}\right|<\mathrm{R}_{2}$ and with residue B_{0}. Let C_{ρ} denotes the upper half of the circle $\left|\mathrm{z}-x_{0}\right|=\rho$, where $\rho<R_{2}$ and the clockwise direction is taken then prove that $\lim _{\rho \rightarrow 0} \oint_{C_{\rho}} f(z) d z=-B_{0} \pi i$.
(ii) Evaluate the integral $\mathrm{I}=\int_{0}^{\infty} \frac{x^{\mathrm{a}}}{(1+x)} \mathrm{d} x, 0<\mathrm{a}<1$.

OR

(b) (i) State and prove Argument principle.
(ii) Prove that the equation $z^{3}+i z+1=0$ has one root in each of the first quadrant, second quadrant and four quadrants.
(c) Attempt any THREE :
(i) State Conformal mapping.
(ii) The fixed point of inverse mapping is \qquad .
(iii) The bilinear transformation $\mathrm{w}=\frac{\mathrm{iz}+2}{4 \mathrm{z}+\mathrm{i}}$ transforms the real axis in the z-plane onto a \qquad in the w-plane. Justify it.
(iv) A bilinear transformation more than two fixed point is \qquad .

