\qquad

AE-135

April-2019
M.Sc., Sem.-II

410 : Mathematics
(New)
Time : 2:30 Hours]
[Max. Marks : 70

1. (A) Attempt the following :
(i) Find the complete integral of $2 \mathrm{zx}-\mathrm{p} x^{2}-2 \mathrm{q} x y+\mathrm{pq}=0$
(ii) Find the general integral of $\left(\mathrm{z}^{2}-2 \mathrm{yz}-\mathrm{y}^{2}\right) \mathrm{p}+x(\mathrm{y}+\mathrm{z}) \mathrm{q}=x(\mathrm{y}-\mathrm{z})$

OR
(i) Eliminate the arbitrary function f and g from $\mathrm{y}=\mathrm{f}(x-\mathrm{at})+\mathrm{g}(x+\mathrm{at})$ and find the corresponding partial differential equation. If $\overrightarrow{\mathrm{X}} . \operatorname{curl} \overrightarrow{\mathrm{X}}=0$ where $\overrightarrow{\mathrm{X}}=(\mathrm{P}, \mathrm{Q}, \mathrm{R})$ and μ is an arbitrary differentiate function of x, y and z then prove that $\mu \vec{X} \cdot \operatorname{curl}(\mu \vec{X})=0$
(ii) Show that the equations $x p=y q, z(x p+y q)=2 x y$ are compatible and solve them.
(B) Choose the correct alternative: (any four)
(i) Find the corresponding PDE by eliminating the arbitrary function F from the equation $\mathrm{z}=\mathrm{F}\left(\frac{x}{\mathrm{y}}\right)$.
(a) $\mathrm{p} x^{2}+\mathrm{qy}^{2}=0$
(b) $\mathrm{p} x+\mathrm{qy}=0$
(c) $\mathrm{p} x+2 \mathrm{qy}=0$
(d) $2 \mathrm{p} x+3 \mathrm{qy}=0$
(ii) Find the corresponding PDE by eliminating the parameters 'a' and 'b' from the equation $\mathrm{z}=\mathrm{ax}+\mathrm{by}$.
(a) $\mathrm{z}=\mathrm{p} x$
(b) $\mathrm{z}=\mathrm{p} x+2 \mathrm{q} y$
(c) $\mathrm{z}=\mathrm{p} x+\mathrm{qy}$
(d) $\mathrm{z}=\mathrm{qy}$
(iii) The solution of $\mathrm{p}+\mathrm{q}=\mathrm{z}$ is
(a) $\mathrm{f}(x+\mathrm{y}, \mathrm{y}+\log \mathrm{z})=0$
(b) $\mathrm{f}(x \mathrm{y}, \mathrm{y} \log \mathrm{z})=0$
(c) $\mathrm{f}(x-\mathrm{y}, \mathrm{y}-\log \mathrm{z})=0$
(d) None of these
(iv) The equation $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=4\left[(x-2)^{2}+(y-3)^{2}\right]$ is of order \qquad and degree \qquad .
(a) 1,2
(b) 2,1
(c) 1,1
(d) 1,3
(v) The differential equation $\mathrm{z}_{x}+(x+y) \mathrm{z}_{\mathrm{y}}=x \mathrm{y}$ is,
(a) Semilinear
(b) Quasilinear (c) Linear
(d) Non-linear
(vi) The differential equation $x z_{x}{ }^{2}+y z_{y}{ }^{2}=2$ is,
(a) Semilinear
(b) Quasilinear
(c) Linear
(d) Non-linear
2. (A) Attempt the following :
(i) Find the complete integral of $p x y+p q+q y=y z$
(ii) Solve the partial differential equation $z_{x} z_{y}=z$ subject to the condition $z(s,-s)=1$

OR

(i) Find the complete integral of $2 \mathrm{p}_{1} x_{1} x_{3}+3 \mathrm{p}_{2} x_{3}^{2}+\mathrm{p}_{2}^{2} \mathrm{p}_{3}=0$
(ii) Solve the initial value problem for the Quasi-linear equation $\mathrm{z}_{\mathrm{y}}+\mathrm{z} . \mathrm{z}_{x}=0$ containing the initial data curve $\mathrm{C}: \mathrm{z}(x, 0)=\mathrm{f}(x)$
(B) Choose the correct alternative : (any four)
(i) Complete integral of the equation $\mathrm{pq}=1$ is,
(a) $\mathrm{a}^{2} \mathrm{x}+\mathrm{y}-\mathrm{az}=\mathrm{c}$
(b) $x+y-a z=c$
(c) $\mathrm{a}^{2} x+\mathrm{y}-\mathrm{az}=0$
(d) $a^{2} x-y-a z=c$
(ii) Complete integral of $(p+q)(z-x p-y q)=1$ is,
(a) $\mathrm{z}=\mathrm{ax}+\mathrm{by}+(\mathrm{a}+\mathrm{b})$
(b) $z=a x+b y+\frac{1}{(a+b)}$
(c) \quad z $=$ ax - by $-(a+b)$
(d) $z=a x-b y-\frac{1}{(a+b)}$
(iii) A solution which contains a number of arbitrary constants equal to the independent variables is called,
(a) Complete integral
(b) Particular integral
(c) General integral
(d) None of these
(iv) A quasi-linear partial differential equation is represented as,
(a) $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
(b) $\mathrm{P}+\mathrm{Q}=\mathrm{R}$
(c) $\mathrm{Pp}-\mathrm{Qq}=\mathrm{R}$
(d) None of above
(v) Which of the following is not an example of a first order differential equation of Clairaut's form?
(a) $\mathrm{p} x+\mathrm{qy}-2 \sqrt{\mathrm{pq}}$
(b) $\mathrm{p} x+\mathrm{qy}=\mathrm{p}^{2} \mathrm{q}^{2}$
(c) $\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{z}^{2}(x+\mathrm{y})$
(d) $\mathrm{p} x+\mathrm{qy}+\frac{1}{\mathrm{p}-\mathrm{q}}$
(vi) If the equation is of the form $\mathrm{f}(\mathrm{p}, \mathrm{q})=0$ then Charpit's equation takes the form,
(a) $\frac{d x}{f_{p}}=\frac{d y}{f_{q}}$
(b) $\frac{\mathrm{d} x}{\mathrm{f}_{\mathrm{p}}}=\frac{\mathrm{dy}}{\mathrm{f}_{\mathrm{q}}}=\frac{\mathrm{dz}}{\mathrm{pf}_{\mathrm{p}}+\mathrm{qf}_{\mathrm{q}}}=\frac{\mathrm{dp}}{0}=\frac{\mathrm{dq}}{0}$
(c) $\frac{\mathrm{d} x}{\mathrm{f}_{\mathrm{p}}}=\frac{\mathrm{dz}}{\mathrm{pf}_{\mathrm{p}}+\mathrm{qf}_{\mathrm{q}}}=\frac{\mathrm{dp}}{-\left(\mathrm{f}_{x}+\mathrm{pf}_{\mathrm{z}}\right)}=\frac{\mathrm{dq}}{-\left(\mathrm{f}_{\mathrm{y}}+\mathrm{qf}_{\mathrm{z}}\right)}$
(d) $\frac{\mathrm{d} x}{\mathrm{f}_{\mathrm{p}}}=\frac{\mathrm{dy}}{\mathrm{f}_{\mathrm{q}}}=\frac{\mathrm{dp}}{-\left(\mathrm{f}_{x}+\mathrm{pf}_{\mathrm{z}}\right)}=\frac{\mathrm{dq}}{-\left(\mathrm{f}_{\mathrm{y}}+\mathrm{qf}_{\mathrm{z}}\right)}$
3. (A) Attempt the following :
(i) Solve the following IVP by Fourier transform method.

PDE: $\mathrm{u}_{\mathrm{t}}(x, \mathrm{t})=\alpha^{2} \mathrm{u}_{x x}(x, \mathrm{t}),-\infty<x<\infty, \mathrm{t}>0$,
IC: $\mathrm{u}(x, 0)=\mathrm{f}(x),-\infty<x<\infty$,
With $\mathrm{u}(x, \mathrm{t}), \mathrm{u}_{x}(x, \mathrm{t}) \rightarrow 0$ as $x \rightarrow \pm \infty, \mathrm{t}>0$.
(ii) State and solve the heat conduction problem for a finite rod of length l with initial temperature distribution in the rod at time $\mathrm{t}=0$ given by $\mathrm{f}(x)$. Use the method of separation of variables.

OR

(i) Reduce the equation $\mathrm{u}_{x x}=x^{2} \mathrm{u}_{\mathrm{yy}}$ to a canonical form.
(ii) State the problem of the wave equation in the case of vibrations of a string of finite length and solve it using the method of separation of variables. Consider that both ends are fixed and initial displacement distribution is $\mathrm{f}(x)$ and initial velocity distribution is $\mathrm{g}(x)$
(B) Choose the correct alternative : (any three)
(i) The $\operatorname{PDE} \mathrm{u}_{\mathrm{tt}}-\mathrm{u}_{x x}=0$ is of the type
(a) Parabolic
(b) Hyperbolic
(c) Elliptic
(d) None
(ii) The $\operatorname{PDE} u_{x x}+u_{y y}=0$ is of the type
(a) Parabolic
(b) Hyperbolic
(c) Elliptic
(d) None
(iii) If $\mathrm{u}_{\mathrm{t}}(x, \mathrm{t})=\alpha^{2} \mathrm{u}_{x x}(x, \mathrm{t})$ then applying Fourier transform we get
(a) $\frac{\mathrm{d}}{\mathrm{dt}} \hat{\mathrm{u}}(\omega, \mathrm{t})=\alpha^{2} \omega^{2} \hat{\mathrm{u}}(\omega, \mathrm{t})$
(b) $\frac{d}{d t} \hat{u}(\omega, \mathrm{t})=-\alpha^{2} \omega^{2} \hat{u}(\omega, \mathrm{t})$
(c) $\frac{\mathrm{d}}{\mathrm{d} \omega} \hat{\mathrm{u}}(\omega, \mathrm{t})=\alpha^{2} \omega^{2} \hat{\mathrm{u}}(\omega, \mathrm{t})$
(d) $\frac{\mathrm{d}}{\mathrm{d} \omega} \hat{\mathrm{u}}(\omega, \mathrm{t})=-\alpha^{2} \omega^{2} \hat{\mathrm{u}}(\omega, \mathrm{t})$
(iv) The $\operatorname{PDE~}_{x x}+x \mathrm{u}_{\mathrm{yy}}=0, x \neq 0$ is elliptic for,
(a) $x=0$
(b) $x<0$
(c) $x=2$
(d) $x>0$
(v) For the wave equation the Boundary condition $u(0, t)=0$ and $u_{x}(0, t)=0$ specifies the type
(a) Dirichlet
(b) Neumann
(c) Robin
(d) Churchill
4. (A) Attempt the following :
(i) Solve the Dirichlet Boundary value problem:

$$
\mathrm{u}_{x x}+\mathrm{u}_{\mathrm{yy}}=0,0<x<\mathrm{a}, 0<\mathrm{y}<\mathrm{b}
$$

to the boundary condition

$$
\begin{aligned}
& \mathrm{u}(x, 0)=\mathrm{f}(x), 0 \leq x \leq \mathrm{a} \\
& \mathrm{u}(x, \mathrm{~b})=0,0 \leq x \leq \mathrm{a} \\
& \mathrm{u}(0, \mathrm{y})=0,0 \leq \mathrm{y} \leq \mathrm{b} \\
& \mathrm{u}(\mathrm{a}, \mathrm{y})=0,0 \leq \mathrm{y} \leq \mathrm{b}
\end{aligned}
$$

(ii) Write the statement of Neumann's Problem for a Circle and solve it.

OR

(i) Show that the exterior Dirichlet problem
$\mathrm{u}_{\mathrm{rr}}+\frac{\mathrm{u}_{\mathrm{r}}}{\mathrm{r}}+\frac{\mathrm{u}_{\theta \theta}}{\mathrm{r}^{2}}=0, \quad 0 \leq \mathrm{r}<\infty$

$$
u(1, \theta)=1+\sin \theta+\cos 3 \theta, \quad 0<\theta<2 \pi,
$$

has the solution $\mathrm{u}(\mathrm{r}, \theta)=1+\frac{1}{\mathrm{r}} \sin \theta+\frac{1}{\mathrm{r}^{2}} \cos 3 \theta$.
(ii) If $u_{1} \& u_{2}$ are solutions of Neumann's BVP then show that, $u_{1}-u_{2}=$ constant. Also show that the solution of Neumann's problem is unique upto the addition of a constant.
(B) Choose the correct alternative : (any three)
(i) Which of the following is not a solution of the Laplace's equation?
(a) $\mathrm{f}(x, y)=x^{2}-y^{2}$
(b) $\mathrm{f}(x, \mathrm{y})=2 x \mathrm{y}$
(c) $\mathrm{f}(x, \mathrm{y})=\mathrm{a} x^{2} \mathrm{y}$, where $\mathrm{a}=$ constant
(d) $\mathrm{f}(x, \mathrm{y})=10 \mathrm{a}$, where $\mathrm{a}=$ constant
(ii) Which of the following is a harmonic function?
(a) $\mathrm{f}(x, \mathrm{y})=(x+\mathrm{iy})^{5} x$
(b) $\mathrm{f}(x, \mathrm{y})=4(x+\mathrm{iy})^{3}$
(c) $\mathrm{f}(x, \mathrm{y})=(x+\mathrm{iy})^{5} \mathrm{y}$
(d) $\mathrm{f}(x, \mathrm{y})=(x+\mathrm{iy})^{3} x \mathrm{y}$
(iii) If u is a solution of Neumann's problem for an upper half of plane, then which of the following is true?
(a) $\int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{y}}(x, 0) \mathrm{d} x=5$
(b) $\quad \int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{y}}(x, 0) \mathrm{d} x=0$
(c) $\int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{y}}(x, 0) \mathrm{d} x=x$
(d) $\int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{y}}(x, 0) \mathrm{d} x=\mathrm{y}$
(iv) A boundary condition which specifies value of normal derivative of function is a
(a) Neumann boundary condition
(b) Dirichlet boundary condition
(c) Robin boundary condition
(d) Cauchy boundary condition
(v) If f is continuous function prescribed on the boundary S of a finite simply connected region V , determine a function $\varphi(x, \mathrm{y}, \mathrm{z})$ which satisfies $\nabla^{2}=0$ outside V and is such that $\varphi=\mathrm{f}$ on S . This type of problem is called
(a) Interior Dirichlet problem
(b) Exterior Dirichlet problem
(c) Annulus Dirichlet problem
(d) Exterior Neumann problem

