Seat No. : \qquad
AE-141
April-2019
M.Sc., Sem.-II

410 : Statistics
(Computer Programming)
(New)

Time : 2:30 Hours]
[Max. Marks : 70

Instruction : Scientific Calculator is allowed.

1. (A) Answer the following :
(1) Discuss applications of computer in various fields.
(2) Economic order quantity can be evaluated from the equation $\mathrm{Q}=\sqrt{\frac{2 \mathrm{RS}}{\mathrm{I}}}$, where R is the yearly requirement, S is the setup cost and I is inventory carrying cost per item. Draw a flow chart to compute EOQ of 100 items. 7

OR

(1) Explain the terms :
(i) Hardware
(ii) Software
(iii) Programmes
(iv) Data
(v) File
(vi) Document
(vii) User
(2) The mean arrival rate of persons at a cinema house ticket window is λ and the mean service rate with which the ticket issurer can issue tickets is μ. If it is assumed that the arrival and the service process follow a Poisson distribution, then the probability that there are n person waiting in a queue is

$$
\mathrm{P}_{\mathrm{n}}=\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}}\left(1-\frac{\lambda}{\mu}\right), \text { where } \frac{\lambda}{\mu}<1
$$

If $\mu=20, \lambda=4$, draw a flow chart to compute P_{n} for $\mathrm{n}=0,1,2,3,4,5$.
(B) Answer any four :
(1) What is meant by 'Algorithm'?
(2) State advantages of flow charts.
(3) State major functions performed by an 'Operating system'.
(4) Explain : Source program and object program
(5) Evaluate the expression
$j=\frac{\left(\frac{57}{4}+\frac{31}{19}+\frac{15}{6} * 2\right)}{\left(\frac{23}{5}+\frac{7}{8}\right)}$, where j is integer
(6) Evaluate the expression
$x=\frac{\frac{10.5}{14.1}+\frac{32.0}{5.7}+56.0}{(2.0 * 8.1 * 2.2)}$ where x is float.
2. (A) Answer the following :
(1) Explain the following terms with suitable examples :
(i) Type Declaration Instruction.
(ii) Arithmetic Instruction
(iii) Integer and Float conversions
(iv) Hierarchy of operations
(v) Input and Output statements
(2) Write a C^{++}programme to obtain value of 2×2 Two-person-zero-sum game without saddle point having payoff matrix of player A as :

Player B

$B_{1} \quad B_{2}$

> OR
(1) Define the following terms with suitable examples:
(i) if statement
(ii) if-else statements
(iii) Multiple statements within if
(iv) Nested if-else statement
(2) Write a^{++}program to evaluate the following function :

A function $\mathrm{f}(x)$ is given by
$\mathrm{f}(x)=\left\{\begin{array}{cl}x(x-5)(x-6) & \text { if } 0 \leq x<5 \\ (x-5)(x-6)(x-7) & \text { if } 5 \leq x<7 \\ 0 & \text { if } x \geq 7\end{array}\right.$
(B) Answer any four :
(1) What is meant by 'Logical Operators'?
(2) Explain the term 'Conditional Operators'.
(3) Convert the following equation into C^{++}statement.
$\mathrm{y}=\frac{\left(\frac{5}{x_{1}}+8\left(\frac{1}{x_{2}}+\frac{1}{x_{3}}\right)\right)}{\left(\frac{2}{x_{5}}+\frac{3}{x_{6}}\right)}$
(4) Find the decimal equivalent of binary number $(1101)_{2}$.
(5) Find conversion of binary number (10111.1101) $)_{2}$ into corresponding octal number.
(6) Obtain conversion of binary number (1110011.1110) $)_{2}$ into corresponding octal number.
3. (A) Answer the following :
(1) Discuss while loop, for loop and Nesting of loops with suitable examples.
(2) Write a C^{++}program to obtain sum of the series :
$1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{99}$

OR

(1) Discuss break statement, continue statement and do-while loop in details.
(2) Consider the quadratic polynomial
$y=3 x^{2}-7 x+28$. Write a C^{++}program which finds y for values of x from (-10) to $(+50)$ in steps of (2.0).
(B) Answer any three :
(1) Find conversion of Hexadecimal number (FBE) 16 into corresponding Binary number.
(2) Find conversion of octal number (25.25) $)_{8}$ into Hexadecimal number.
(3) Obtain conversion of binary number $(1001.1101)_{2}$ into corresponding hexadecimal number.
(4) Find conversion of decimal number (125.5) $)_{10}$ in to binary number.
(5) What is meant by 'Header files' ?
4. (A) Answer the following :
(1) Define 'Function'. Discuss its utility. Explain pointers with suitable examples.
(2) A factory gives following rates of commission for monthly sales of the product:

Monthly Sales (in ₹) Commission
Below 20,000 No commission
20001 to $25000 \quad 5 \%$ commission
25001 to $35000 \quad 7 \%$ commission
above $35000 \quad 10 \%$ commission
Write a C^{++}program to read the sales and print the commission.

OR

(1) Define 'Arrays'. Explain two dimensional and three dimensional arrays with suitable examples. Discuss array of pointers.
(2) Write a C++ program to obtain TRACE of a matrix A, where $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{3 \times 3}$
(B) Answer any three :
(1) What is meant by string ?
(2) Explain the term 'Turnery Operator'.
(3) Define 'Structures'.
(4) Explain switch statement.
(5) What is meant by 'One Dimensional Array'?

Seat No. : \qquad

AE-141
 April-2019
 M.Sc., Sem.-II
 410 : Statistics
 (Computer Programming) (Old)

Time : 2:30 Hours]
[Max. Marks: 70

Instruction : Scientific Calculator is allowed.

1. (A) Answer the following :
(1) Explain the following terms :
(i) Processor
(ii) Memory and Storage
(iii) Input-Output Devices
(iv) Software
(2) Draw a flow chart to obtain Karl Pearson correlation coefficient between following two variables X and Y where
$\mathrm{X}=x_{1}, x_{2}, \ldots x_{\mathrm{n}}, \mathrm{Y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{n}}$

OR

(1) Discuss applications of computers in various fields.
(2) Draw a flow chart to obtain coefficient of variation (c.v.) for the following n observations.
$x_{1}, x_{2}, x_{3}, \ldots x_{\mathrm{n}}$.
(B) Answer any Four :
(1) Define 'Algorithm'.
(2) What is meant by 'Computer Hardware'?
(3) Explain the term : Machine Language.
(4) What is meant by 'Micro Computers'?
(5) Evaluate the expression.
$j=\frac{\left(\frac{58}{6}+\frac{29}{21} * 3\right)}{2}$, where j is integer.
(6) Evaluate the expression.
$x=\frac{\frac{8.0}{13.0}+\frac{29.0}{5.0}+55.0}{(3.0 * 8.5)}$
where x is float.
2. (A) Answer the following :
(1) Explain the following terms with suitable examples:
(i) Input-Output statements
(ii) Type Declaration Instruction
(iii) Arithmetic Instruction
(iv) Integer and Float Conversions
(v) Constant and Variable
(2) Let X be a random variable having following probability distribution :

\mathbf{X}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
$\mathbf{P}(\boldsymbol{x})$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}

Write a C^{++}program to obtain $\mathrm{E}\left(\mathrm{X}^{2}\right)$.
OR
(1) Discuss various Branching Statement using suitable examples.
(2) Write a $\mathrm{C}++$ programme to compute the following functions :
$\mathrm{f}(x)=\left\{\begin{array}{lll}x^{2}+5 & \text { if } & x \geq 0 \\ x-2 & \text { if } & x<0\end{array}\right.$
(B) Answer any four :
(1) Convert the equation:
$\mathrm{r}=\frac{2 v+1.23(\mathrm{c}+\mathrm{k})}{\left(\frac{1}{x}+\frac{1}{y}\right)}$ into corresponding C^{++}statement.
(2) Convert the C^{++}statement

$$
\frac{\left(\frac{5}{x_{1}}+\frac{4}{x_{2}}+\frac{3}{x_{3}}\right)}{\left(\frac{2}{x_{4}}\right) *\left(\frac{3}{x_{5}}\right)}
$$

into corresponding algebraic expression.
(3) Find decimal equivalent to binary number $(0101)_{2}$.
(4) Find conversion of binary number (1010.1111) $)_{2}$ into corresponding octal number.
(5) Find conversion of binary number (10011011.1010) $)_{2}$ into corresponding hexadecimal number.
(6) Define the term 'Logical Operators'.
3. (A) Answer the following :
(1i) Discuss while loop, for loop and Nesting of loops with suitable examples.
(2) Write a C^{++}program to obtain sum $\sum_{\mathrm{n}=1}^{100}\left(\frac{1}{\mathrm{n}^{2}}\right)$.

OR

(1) Discuss break statement, continue statement and do-while loop in details.
(2) Consider the quadratic polynomial $\mathrm{y}=2 x^{2}-3 x+5$. Write a C^{++}program which finds y for values of x from -4 to +4 in steps at 0.5
(B) Attempt any Three :
(1) Find conversion of Hexadecimal number (CAE) ${ }_{16}$ into corresponding Binary number.
(2) Find the conversion of Octal number (43.5) ${ }_{8}$ into Hexadecimal number.
(3) Obtain conversion of binary number $(1100.1011)_{2}$ into corresponding Hexadecimal number.
(4) Find conversion of decimal number (25.25) $)_{10}$ into binary number.
(5) What is meant by conditional operators?
4. (A) Answer the following :
(1) Explain the following terms :
(i) Array initialization
(ii) Two-dimensional Arrays
(iii) Array of Pointers
(iv) Structures
(2) Write a $\mathrm{C}++$ program to obtain TRACE of a matrix A , where $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{3 \times 3}$.

OR

(1) Define 'Function'. Explain the reasons of using functions with suitable examples. What is meant by pointers?
(2) The monthly commission paid to a sales person is as follows :

If sales $<₹ 10,00$, no Commission
If sales ≥ 10000 but less than $₹ 50,000,10 \%$ commission
If sales \geq ₹ $50,000,12 \%$ commission
Write C^{++}program to compute commission.
(B) Answer any three :
(1) Define 'Strings'.
(2) What is meant by 'Pointers to functions'?
(3) Explain the term 'Turnery Operator'.
(4) State the meaning of 'Header files'.
(5) Find $(1111)_{2}+(0101)_{2}$.

