Seat No. : \qquad

MA-123

March-2019

M.Sc., Sem.-I

401 : CHEMISTRY (INORGANIC CHEMISTRY)

Time : 2:30 Hours]
[Max. Marks: 70

1. (A) Explain step-up and step-down operators of angular momentum. Prove that $\mathrm{L}+$ and $\mathrm{L}-$ are not but $\mathrm{L}+\mathrm{L}-$ and $\mathrm{L}-\mathrm{L}+$ are Hermitian operators.

OR

(i) Find out commutator value of the angular momentum operators L_{z} and L_{y}.
(ii) In Perturbation theory, show that if H and H^{0} are Hermitian operators then perturbed Hamiltonian operator H^{\prime} is also Hermitian.
(B) Answer any four questions in one or two lines from the following :
(1) What is the importance of calculating delocalization energy?
(2) In HMO theory, which molecule is used for the calculation of free valency $\mathrm{N}_{\max }$?
(3) For Helium atom, after perturbation, what is the value of $E_{1 s^{2}}$ in atomic unit?
(4) State the second postulate of the quantum chemistry.
(5) If a is an amplitude of vibration and k is a constant, then what is the value of total energy?
(6) Prove that commutator $[\mathrm{A}, \mathrm{B}]=-[\mathrm{B}, \mathrm{A}]$.
2. (A) If A, B and C are all matrices of order 3×3 and all the elements of each of them are real numbers, by taking a suitable examples, calculate the following properties of the matrices :
(a) $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}(\mathrm{b}) \mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$ and (c) $\mathrm{A}(\mathrm{B} \times \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}$.

OR

(i) Discuss the four area of the character table.
(ii) Determine the irreducible representations in direct product representation for $\mathrm{E}+\mathrm{T}_{1}+\mathrm{T}_{2}$ in Td .
(B) Answer any four questions in one or two lines from the following:
(1) What is the $\chi\left(\mathrm{S}_{3}\right)$ value ?
(2) What should be the criteria of the matrix multiplication for the two matrices A \& B ?
(3) State any one 'General Rule' from 'The Great Orthogonality' theorem.
(4) What clarification can be given for A_{2} Mulliken symbol for $C_{3 v}$ point group?
(5) Write the reduction formula for making the representation irreducible.
(6) What is the application of similarity transformation?
3. (A) Write a note on Pascal's Constant. Calculate the value of $\chi \mathrm{M}$ (dia) for (a) $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and (b) Pyridine.
(Given : $\chi \mathrm{Cu}^{2+}=-11 \times 10^{-4} \mathrm{emu} \mathrm{mol}{ }^{-1}, \chi \mathrm{OA}_{\mathrm{C}}=-31.5 \times 10^{-6} \mathrm{emu} \mathrm{mol}{ }^{-1}$, $\chi \mathrm{H}_{2} \mathrm{O}=-11 \times 10^{-6} \mathrm{emu} \mathrm{mol}{ }^{-1}, \chi \mathrm{~A} \mathrm{C}^{*}=-6.2 \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}, \chi \mathrm{~A} \mathrm{H}=-4.6 \times$ $\left.10^{-6} \mathrm{emu} \mathrm{mol}^{-1}, \chi \mathrm{AN}^{*}=-6.2 \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}\right)$

OR

(i) Explain the terms ferromagnetism and antiferromagnetism. Distinguish between the properties of the compounds exhibiting such phenomenon.
(ii) Derive the equation for spin magnetic moment and the value of Bohr Magnetron.
(B) Answer any three questions in one or two lines from the following :

3
(1) Give examples of molecules for intermolecular antiferromagnetism.
(2) Define Permeability.
(3) What is Magnetic induction?
(4) What is Neel Temperature?
(5) What is pole strength?
4. (A) Discuss in detail myoglobin and cytochromes.

OR

(i) Discuss 'In Vitro' nitrogen fixation.
(ii) Discuss the role of gold complexes in rheumatoid arthritis.
(B) Answer any three questions in one or two lines from the following: $\mathbf{3}$
(1) What is the bond energy of N_{2} ?
(2) What is the biological function of Manganese?
(3) Define Enzymes.
(4) Why light is avoided in the preparation of cis-platin?
(5) Give examples of molecules for intermolecular antiferromagnetism.

