Seat No. : \qquad

ML-114

March-2019

M.Com., Sem.-IV
 507 : Statistics
 (Operational Research)

Time : 2:30 Hours]
[Max. Marks : 70
સૂચના : (1) જમણી બાજુ લખેલ અંક ગુણ દર્શાવે છે.
(2) કેલક્યુલેટ૨નો ઉપયોગ કરી શકાય છે.

1. (A) (i) કાર્યાત્મક સંશોધનની વ્યાખ્યા આપી તેની મર્યાદાઓ અને તબક્કાઓની ચર્ચા કરો.
(ii) એક બેકરી દર કિ.ગ્રા.ના ₹ 120 લેખે બિસ્કીટનું વેચાણ કરે છે. તેનો ઉત્પાદન ખર્ચ દર કિ.ગ્રા. દીઠ ₹ 80 છે અને તેનો વહીવટી ખર્ચ દ૨ કિ.ગ્રા. ના ₹ 10 છે. ભૂતકાળના અનુભવના આધારે કહી શકાય કે જો તે ન વેચાય તો અઠવાડિયાના અંતે તે બિસ્કીટ દ૨ કિ.ગ્રા. દીઠ ₹ 40 લેખે પરત કરવામાં આવે છે. તેની માંગનું સંભાવના વિતરણ નીચે મુજબ છે. તે ઉપ૨થી મહત્તમ નફો મેળવવા માટે કેટલા કિ.ગ્રા. બિસ્કીટનું ઉત્પાદન કરવું જોઈએ તે નક્કી કરો ઉપરાંત EVPI પણ શોધો.

માંગ ((િિ.ગ્રા. માં)	1	2	3	4
અઠવાડિયાની સંખ્યા	15	20	50	15
અથવા				

(i) મોડેલનો અર્થ જણાવી તેના પ્રકારોની સવિસ્તાર સમજૂતી આપો.
(ii) નિશ્ચિતતાના સંદર્ભમાં નિર્ણય લેવાની અને અનિશ્ચિતતાના સંદર્ભમાં નિર્ણય લેવાની ૨ીત વિશે સમજૂતી આપો.
(B) ગમે તે બે લખો :
(1) EMV (અપેક્ષિત નાણાકીય મૂલ્ય) એટલે શું ?
(2) નિર્ણયયનો સિદ્વાંત એટલે શું ?
(3) કાર્યાત્મક સંશોધનના ગમે તે બે લક્ષણો લખો.
2. (A) (i) નીચે આપેલ સુરેખ આયોજનની સમસ્યાને સિમ્પલેક્ષની રીતે ઉેકેલો.

હેતુલક્ષી વિધેય $\mathrm{Z}=3 x+2 y$ ને નીચેની શ૨તોને આધીન મહત્તમ બનાવો.

$$
\begin{aligned}
& 2 x+y \leq 18 \\
& 2 x+3 y \leq 42 \\
& 3 x+y \leq 24 \\
& x, y \geq 0
\end{aligned}
$$

(ii) નીચે આપેલી નિયુક્તિની સમસ્યાને કુલ નફો મહત્તમ બને તે ૨ીતે બકેલો :

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
I	57	50	43	36
II	45	40	35	30
III	45	40	35	30
IV	39	35	31	27

અથવા
નીચે આપેલ વાહનવ્યવહારની સમસ્યાને વોગેલની રીતે ઉેકેલો. તેમજ તેનો ઈષષ્ટતમ ઉકેલ પણ શોધો.

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	જथ्थो
I	2	7	4	5
II	3	3	1	8
III	5	4	7	7
IV	1	6	2	14
માંગ	7	9	18	-

(B) ગમે તે બે લખો :
(1) વધ-ચલ અને ઘટ-ચલની વ્યાખ્યા લબો.
(2) અસમતોલ વાહનવ્યવહારની સમસ્યા અને સમતોલ વાહનવ્યવહારની સમસ્યા વચ્ચેનો મુખ્ય તફાવત લખો.
(3) નિયુક્તિની સમસ્યાની વ્યાખ્યા જણાવો.
3. (A) (i) પલાણ્ય બિંદુ એટલે શું ? તે કેવી રીતે શોધાય ? નીચે આપેલ ૨મતનું પલાણ્ય બિંદુ શોધી ૨મતની કિંમત પણ શોધો.

$$
\mathrm{Y}_{4} \mathrm{Y}_{5}
$$

(ii) નીચે આપેલ માહિતી ઉપ૨થી ઈீષ્ટતમ ક્રમ, કુલ ન્યૂનતમ સમય અને નવરશશનો સમય शोधો :

કાર્ય	1	2	3	4	5	6	7	8	9
મશીન-A	13	16	15	20	17	19	18	16	15
મશીન-B	17	19	18	15	14	20	14	19	21
અथवા									

(i) નીચે આપેલ ૨મતનો ઉકેલ સરસાઈના સિદ્વાંતનો ઉપયોગ કરી મેળવો.
$\left[\begin{array}{lll}3 & 9 & 4 \\ 8 & 4 & 9 \\ 8 & 3 & 8\end{array}\right]$
(ii) બે યંત્રો પ૨ ‘ n ' કામો પ્રોસેસ ક૨વાની પ્રક્રિયા તેમજ ત્રણ યંત્રો પ૨ ‘ n ' કાર્યો પ્રોસેસ ક૨વાની પ્રક્રિયા સમજાવો.
(B) ગમે તે ત્રણ લખો :
(1) ૨મતના સિધ્ધાંતની વ્યાખ્યા લખ.
(2) ૨મતના સિધ્ધાંત અનુસાર ગુર-લધુ સિદ્વાંતનો અર્થ લખો.
(3) ૨મતના સિદ્વાંતમાં આલેખની પદ્ધતિનો ઉપયોગ ક્યારે ક૨વામાં આવે છે ?
(4) ક્રમતાની સમસ્યાની ધારણા લખો.
(5) ક્રમતા એટલે શું?
4. (A) (i) પર્ટની વ્યાખ્યા લખો તેના ફાયદા, ગેરફાયદા અને લક્ષણુો સમજાવો.
(ii) નીચે આપેલી માહિતી પ૨થી EST, LFT, EFT, LST, TF, FF, IF અને કટોકટીપૂૂ્ણ માર્ગ शोधો :

પ્રવृశ्ति	a	b	c	d	e	f	g	h	i	j
भार्ग	$1-2$	$2-3$	$2-4$	$3-5$	$3-7$	$4-5$	$4-6$	$7-8$	$5-8$	$6-8$
सभय	12	13	14	12	14	10	15	13	12	16
અथवા										

(i) સમજાવો :
(1) કુલ પ્રવાહિતા (TF)
(2) સ્વતંત્ર પ્રવાહિતા (IF)
(3) મુઝ્ત પ્રવાહિતા (FF)
(ii) એક પ્રોજેકટની વિવિધ પ્રવૃત્તિઓ માટે નીચે મુજબના સમયના આગણણકો ઉપલબધ્ધ છે :

પ્રવૃત્તિ	પૂર્વ પ્રવૃત્તિ	(સમય અઠવાડિયામાં)		
		$\mathbf{t}_{\mathbf{o}}$	$\mathbf{t}_{\mathbf{p}}$	$\mathbf{t}_{\mathbf{m}}$
A	-	2	14	2
B	A	3	15	6
C	A	7	13	10
D	B	4	16	10
E	-	4	28	10
F	C, D	5	17	11
G	C	4	28	10
H	E	7	13	10

(1) પર્દ નકશો દોરો.
(2) અપેક્ષિત સમય અને તેનું વિચરણ શોધો.
(3) પ્રોજેકટનો સરેરાશ સમાપ્તિ સમય અને તે સમય માટેનું તેનું વિચરણ શોધો.
(4) પ્રોજેક્ટ 36 અઠવાડિયામાં પૂર્ણ ન થાય તેની સંભાવના શોધો.
($z= \pm 1$ આગળ 0.3413 લો.)
(B) ગમે તે ત્રણુની વ્યાખ્યા લખો :
(1) t_{e}
(2) t_{o}
(3) t_{m}
(4) t_{p}
(5) σ_{t}^{2}
\qquad

ML-114

March-2019

M.Com., Sem.-IV

507 : Statistics
(Operational Research)
Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) Figures to the right indicate marks.
(2) You can use calculator.

1. (A) (i) Define operation research and discuss its limitations and phases.
(ii) A bakery sells cookies at $₹ 120$ per kg. The cookies can be prepared at the cost of $₹ 80$ per kg and administrative cost is $₹ 10$ per kg. The unsold cookies can be return at ₹ 40 per kg at the end of the week from the past experience. The following distribution is obtained about the demand. Estimate how many kg of cookies should be prepared to earn maximum profit? Find the value of EVPI also.

Demand (in kg)	1	2	3	4
No. of weeks	15	20	50	15
OR				

(i) State the meaning of model. Explain its types in detail.
(ii) Explain decision making under certainty and decision making under uncertainty.
(B) Attempt any two :
(1) What is Expected Monetary Value ?
(2) What is decision theory?
(3) Write any two characteristics of operation research.
2. (A) (i) Solve the following L.P.P. by using simplex method

Maximize objective function $\mathrm{Z}=3 x+2 \mathrm{y}$
Subject to $2 x+y \leq 18$
$2 x+3 y \leq 42$
$3 x+y \leq 24$
$x, \mathrm{y} \geq 0$
(ii) Solve the following assignment problem to maximize the total profit :

	A	B	C	\mathbf{D}
I	57	50	43	36
II	45	40	35	30
III	45	40	35	30
IV	39	35	31	27

OR
Solved the following transportation problem by using Vogel's method. Find its optimal solution also.

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	Supply
I	2	7	4	5
II	3	3	1	8
III	5	4	7	7
IV	1	6	2	14
Demand	7	9	18	-

(B) Attempt any two :
(1) Define Surplus-Variable and Slack-Variable.
(2) State the difference between unbalanced transportation problem and balanced transportation problem.
(3) Give the definition of Assignment Problem.
3. (A) (i) What is saddle point ? How to find it ? Find the saddle point of the following game, also find out the value of game.

$$
\begin{aligned}
& \text { Player - Y } \\
& \begin{array}{lllll}
Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5}
\end{array} \\
& \text { Player - X } \begin{array}{c}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\left[\begin{array}{ccccc}
-5 & 0 & 1 & 8 & 6 \\
6 & 4 & 3 & 4 & 5 \\
-4 & -3 & 0 & -1 & 6 \\
6 & 2 & -4 & 5 & -6
\end{array}\right]
\end{aligned}
$$

(ii) Find out the optimal sequence, the minimum elapsed time and idle time for the following :

Jobs	1	2	3	4	5	6	7	8	9
Machine-A	13	16	15	20	17	19	18	16	15
Machine-B	17	19	18	15	14	20	14	19	21
OR									

(i) Solve the following game by using the principle of dominance :
$\left[\begin{array}{lll}3 & 9 & 4 \\ 8 & 4 & 9 \\ 8 & 3 & 8\end{array}\right]$
(ii) Explain the problem of processing ' n ' jobs through two machines and the problem of processing ' n ' jobs through three machines.
(B) Attempt any three :

3
(1) State the definition of Game Theory.
(2) With reference to game theory, what do you mean by maxi-min principle.
(3) In Game theory for, when graphical method is to be used ?
(4) Write the assumption of sequencing problem.
(5) What do you mean by sequencing?
4. (A) (i) Write the meaning of PERT, explain its advantages, disadvantages and characteristics.
(ii) From the following data obtain EST, LFT, EFT, LST, TF, FF, IF and critical path.

Activities	a	b	c	d	e	f	g	h	i	j
Path	$1-2$	$2-3$	$2-4$	$3-5$	$3-7$	$4-5$	$4-6$	$7-8$	$5-8$	$6-8$
Time	12	13	14	12	14	10	15	13	12	16
OR										

(i) Explain :
(1) Total Float
(2) Independent Float
(3) Free Float
(ii) A project has the following different activities and time estimates :

Activity	Preceding	Time in week		
		$\mathbf{t}_{\mathbf{o}}$	$\mathbf{t}_{\mathbf{p}}$	$\mathbf{t}_{\mathbf{m}}$
A	-	2	14	2
B	A	3	15	6
C	A	7	13	10
D	B	4	16	10
E	-	4	28	10
F	C, D	5	17	11
G	C	4	28	10
H	E	7	13	10

(1) Draw PERT network.
(2) Find out the estimated time and its variance.
(3) Find the average completation time of the project and its variance.
(4) Find the probability that the project will not completed within 36 weeks.
(The value of $\mathrm{z}=0.3413$ for ± 1)
(B) Define any three :
(1) t_{e}
(2) t_{o}
(3) t_{m}
(4) t_{p}
(5) σ_{t}^{2}

