Seat No. : \qquad

AA-151

April-2019

F.Y. Integrated M.Sc., (C.A. \& I.T.), Sem.-II
 Matrix Algebra \& Graph Theory

Time : 2:30 Hours]
[Max. Marks : 70
Instruction : Use of simple calculator is allowed.

1. (a) Attempt any one.
(i) Suppose G is a graph with at least two vertices. Show that it is impossible that all vertices have different degrees.
(ii) Let G be a k-regular graph, where k is an odd number. Prove that the number of edges in G is a multiple of k .
(iii) Prove that it is impossible to have a group of nine people at a party such that each one knows exactly five of the others in a party.
(b) Attempt all :
(i) Define simple graph.
(ii) Give an example of 4-regular graph on 6 vertices. (Draw it).
(iii) Determine the number of edges in a graph having six vertices, two having degree 4 and four having degree 2 .
(iv) Define square of a graph.
2. (a) Attempt any one.
(i) Find minimal spanning tree of the following graph using Kruskal's algorithm.

(ii) Apply Dijkstra's algorithm to find shortest path between a vertex A and F.

(b) Attempt all :
(i) Define tree
(ii) Define digraph.
(iii) Define weakly connectedness in a digraph.
(iv) Define ditrail.
3. (a) Attempt any one.

10
(i) Find the inverse of a matrix $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 2 & -1 & 3 \\ 3 & -1 & 2\end{array}\right]$ and hence verify $\mathrm{AA}^{-1}=\mathrm{I}_{3 \times 3}$.
(ii) Prove that K_{5} is not a planar graph.
(b) Attempt all :
(i) If $A=\left[\begin{array}{cc}-1 & 3 \\ 4 & 2 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 2 & -2 \\ -1 & 3 & 1\end{array}\right]$. Find $A B$ and $B A$.
(ii) If A and B is $\mathrm{n} \times \mathrm{n}$ matrices then show that trace $(\mathrm{A}+\mathrm{B})=\operatorname{trace} \mathrm{A}+\operatorname{trace} \mathrm{B}$. If A and B is $n \times n$ matrices then show that trace $(\alpha A)=\alpha$ trace A.
4. (a) Attempt any one.
(i) Verify Caley-Hamilton's theorem for a matrix $A=\left(\begin{array}{ccc}2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6\end{array}\right)$
(ii) Find row reduced echelon form of a matrix $\mathrm{A}=\left(\begin{array}{cccc}-2 & -1 & 3 & -3 \\ 3 & 2 & -1 & 5 \\ -2 & -1 & 2 & 0\end{array}\right)$
(b) Attempt any one.
(i) Find the rank of a matrix $\mathrm{A}=\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 1 & 2\end{array}\right)$.
(ii) Show that the subset $\mathrm{A}=\{(5,0,0),(0,1,2),(0,2,7)\}$ of the vector space \mathbb{R}^{3} is linearly independent.
5. (a) Attempt any one.
(i) Three consecutive coefficients in the expansion of $(1+x)^{\mathrm{n}}$ are 28,56 and 70. Find n.
(ii) How many permutations are possible with all the letters of the word HEXAGON? In the dictionary order of these words, which place will this word occupy?
(b) Attempt any two :
(i) If repetition is allowed, how many 3×3 matrices can be formed using numbers $0,1,2$?
(ii) Find the constant term in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$
(iii) Find the co-efficient of x^{32} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$

