Seat No. : \qquad

MU-110

March-2019
B.Sc., Sem.-IV

CC-204 : Mathematics
(Advanced Calculus-II)

Time : 2:30 Hours]
[Max. Marks: 70
સૂચના : (1) બધા જ પ્રશ્નો ફ૨જિયાત છે.
(2) ઉત્તરવહીમાં પ્રશ્નપત્રમાં દર્શાવ્યા પ્રમાણો પ્રશ્નનો અંક લખનોો.
(3) જમણી ત૨ફનાં એક જે તે પ્રશ્નનો ગુણભાર દર્શાવે છે.

1. (A) (i) ધ્રુવીય યામ પદ્ધતિમાં ३પાંતરીત કરીનો શોધો : $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{dyd} x$.
(ii) સંકલનનો ક્રમ બદલો : $\int_{0}^{4} \int_{\sqrt{y}}^{2} \mathrm{e}^{x^{3}} \mathrm{dyd} x$.

અથવા
(i) शोधો : $\iint_{\mathrm{R}} x \mathrm{y}$ d $x \mathrm{dy}$, જ્યાં $\mathrm{R}=\left\{(x, \mathrm{y}) / x \geq 0, \mathrm{y} \leq 4, x^{2} \leq \mathrm{y}\right\}$.
(ii) યામ સમતલો અને સમતલ $x+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=1$ દ્વારા ઘેશાયેલ ઘનનું ઘનફળ શોધો.
(B) ટૂંકમાં જવાબ આપો : (કોઈૅપણ બે)
(i) शोधો : $\int_{0}^{1} \int_{0}^{x} x \mathrm{dyd} x$
(ii) $\iint_{\mathrm{R}} \mathrm{f}(x, y) \mathrm{d} x \mathrm{dy}$ ની સંકલ સીમા શોધો, જ્યાં R એ રેખાઓ $\mathrm{y}=0, \mathrm{y}=x, \mathrm{y}=2$ દ્વા૨ા ઘેરાયેલા વિસ્તાર છે.
(iii) शોધો: $\frac{\partial(x, y)}{\partial(r, \theta)}$, જ્યાં $x=r \cos \theta, y=r \sin \theta$.
2. (A) (i) પ્રચલિત સકેતો મુજબ, સાબિત કરો કે $\sqrt{\mathrm{n}} \sqrt{\mathrm{n}+\frac{1}{2}}=\frac{\sqrt{\pi}}{2^{2 \mathrm{n}-1}} \sqrt{2 \mathrm{n}}$.
(ii) જો $\overline{\mathrm{r}}=x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$ અને $|\overline{\mathrm{r}}|=\mathrm{r}$ હોય તો સાબિત કરો કे $\nabla^{2} f(\mathrm{r})=f^{\prime \prime}(\mathrm{r})+\frac{2}{\mathrm{r}} f^{\prime}(\mathrm{r})$ કे જ્યાં $f(\mathrm{r})$ એ r નું વિધેય છે.

અથવા
(i) બીટા - ગામા વિધેયોનો ઉિપયોગ કરીને નીચેનાની કિંમત મેળવો :
(i) $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} \mathrm{~d} x$
(ii) $\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{4}\right)^{3}} \mathrm{~d} x$
(ii) જો ϕ એ અદીશ વિધેય અને $\bar{f}=f_{1} \overline{\mathrm{i}}+f_{2} \overline{\mathrm{j}}+f_{3} \overline{\mathrm{k}}$ એ $\mathrm{D} \subset \mathrm{R}^{3}$ ઉुપर વિકલનીય સEિશ વિધેય છે, તો સાબિત કરો કે $\operatorname{div}(\phi \bar{f})=\phi \operatorname{div} \bar{f}+\bar{f} \cdot \operatorname{grad}(\phi)$.
(B) ટૂંકમાં જવાબ આપો : (કોઈૅપણ બે)
(i) $\quad \beta(\mathrm{m}+1, \mathrm{n})+\beta(\mathrm{m}, \mathrm{n}+1)=\beta(\mathrm{m}, \mathrm{n})$ સાબિત કરો.
(ii) ઓઈલરનું સૂત્ર લખો અને $\sqrt{\frac{1}{4}} \sqrt{\frac{3}{4}}$ મેળવો.
(iii) બિંદુ $(1,1,1)$ ૫૨ $\operatorname{Curl}\left(x^{2} \overline{\mathrm{i}}+x y z \overline{\mathrm{j}}-z x \overline{\mathrm{k}}\right)$ शोधો.
3. (A) (i) સ્ટોક્સનો પ્રમેય લખો અને સાબિત કરો.
(ii) શોધો : $\int_{c}\left(x^{2}+y^{2}\right) \mathrm{d} x+(x+y) d y$, જ્યાં C એ શિરેબિંદુ $(\pm 1, \pm 1)$ થી ઘેરાયેલા ચોરસની સીમા છે.

અથવા

(i) ગ્રીનનું પ્રમેય લખો અને સાબિત કરે.
(ii) शोધો : $\iint_{\mathrm{S}} \bar{f}$.ndS, જ્ય્i $\bar{f}=\left(x^{3}-\mathrm{yz},-2 x^{2} \mathrm{y}, \mathrm{z}\right)$ अને S એ $x=0, \mathrm{y}=0, \mathrm{z}=0$, $x=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=\mathrm{a}$ थી ઘેરયેલા યોરસ પેટીનું પૃષ્ઠ છે.
(B) ટૂંકમાં જવાબ આપો : (કોઈૅણ બે)
(i) ફેખા $\mathrm{y}=x^{2}$ ઉ૫૨ $(0,0)$ थી $(1,1)$ સુધી $\int x \mathrm{~d} x+\mathrm{y}$ dy મેળવો.
(ii) ગાઉસના પ્રમેયનું વિધાન લખો.
(iii) પૃષ્ઠ $x^{2}+y^{2}+z^{2}=1$ નો અભિલંબ એકમ સEિશ મેળવો.
4. (A) (i) સાબિત કરો કે સુરેખ આંશિક વિકલ સમીકરણ $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ નો વ્યાપક Єેકે $\mathrm{F}(\mathrm{u}, \mathrm{v})=0$ છે. જ્યાં F એ સ્વૈચ્છિક વિધેય છે, $\mathrm{u}(x, \mathrm{y}, \mathrm{z})=\mathrm{c}_{1}$ અને $\mathrm{v}(x, \mathrm{y}, \mathrm{z})=\mathrm{c}_{2}$ એ સમીકરણ $\frac{\mathrm{d} x}{\mathrm{P}}=\frac{\mathrm{dy}}{\mathrm{Q}}=\frac{\mathrm{dz}}{\mathrm{R}}$ ના સુરેખ સ્વાયત ઉ઼ેલ છે.
(ii) સમીકશણ $\mathrm{z}=\mathrm{F}(x y)+\mathrm{G}\left(\frac{x}{y}\right)$ માંથી વિધેય F અને G નો લોપ કરીને આંશિક વિકલ સમીક૨ણ મેળવો.

અથવા

(i) व्यાપક ઉકેલ મેળવો: $(\mathrm{y}+\mathrm{z}) \mathrm{p}+(\mathrm{z}+x) \mathrm{q}=(x+\mathrm{y})$.
(ii) સમીકશણ $x^{2}+(y-a)^{2}+z^{2}=b^{2}$ માંથી a, b નો લોપ કરો અને $x \mathrm{p}+\mathrm{yq}=\mathrm{z}$ નું સંપૂૂર્ણ સંકલ મેળવો.
(B) ટૂંકમાં જવાબ આપો : (કોઈીપણ બે)
(i) આંશિક વિકલ સમીક૨ણ $x^{3} \mathrm{Z}_{\mathrm{xy}}-\mathrm{p} x+\mathrm{qy}=0$ ના કક્ષા અને પરીમાણ શોધો.
(ii) ઉૈકેલ લખો: $\mathrm{d} x=\mathrm{dy}=\mathrm{dz}$
(iii) જो $x^{2}+x+\mathrm{y}-\mathrm{z}=0$ तो $\mathrm{p}=$ \qquad अने q = \qquad .
\qquad

MU-110

March-2019
B.Sc., Sem.-IV

CC-204 : Mathematics
(Advanced Calculus-II)

Time : 2:30 Hours]
[Max. Marks: 70
Instructions: (1) All questions are compulsory.
(2) Write the question number in your answer sheet as shown in the question paper.
(3) Figures to the right indicate marks of the question.

1. (A) (i) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{dyd} x$ by changing into polar co-ordinates.
(ii) Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} \mathrm{e}^{x^{3}} \mathrm{dyd} x$ by changing the order of integration.

OR
(i) Evaluate $\iint_{\mathrm{R}} x \mathrm{y} \mathrm{d} x \mathrm{dy}$, where $\mathrm{R}=\left\{(x, \mathrm{y}) / x \geq 0, \mathrm{y} \leq 4, x^{2} \leq \mathrm{y}\right\}$.
(ii) Find the volume of solid bounded by the co-ordinate planes and the plane

$$
x+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=1 .
$$

(B) Give the answer in brief: (any two)
(i) Evaluate : $\int_{0}^{1} \int_{0}^{x} x \mathrm{dyd} x$
(ii) Find the limit of $\iint_{\mathrm{R}} \mathrm{f}(x, \mathrm{y}) \mathrm{d} x \mathrm{~d} y$, where R is bounded by $\mathrm{y}=0, \mathrm{y}=x$,

$$
y=2 .
$$

(iii) Evaluate $\frac{\partial(x, y)}{\partial(\mathrm{r}, \theta)}$. when $x=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$.
2. (A) (i) In usual notations, prove that $\sqrt[n]{n+\frac{1}{2}}=\frac{\sqrt{\pi}}{2^{2 n-1}} \sqrt{2 n}$.
(ii) If $\overline{\mathrm{r}}=x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$ and $\mathrm{r}=|\overline{\mathrm{r}}|$ then prove that $\nabla^{2} f(\mathrm{r})=f^{\prime \prime}(\mathrm{r})+\frac{2}{\mathrm{r}} f^{\prime}(\mathrm{r})$, where $f(\mathrm{r})$ is a function of r .
(i) Evaluate the following using beta-gamma functions :
(i) $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} \mathrm{~d} x$
(ii) $\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{4}\right)^{3}} \mathrm{~d} x$
(ii) If ϕ is a scalar function and $\bar{f}=f_{1} \overline{\mathrm{i}}+f_{2} \overline{\mathrm{j}}+f_{3} \overline{\mathrm{k}}$ is a differentiable vector point function on $\mathrm{D} \subset \mathrm{R}^{3}$, then prove that $\operatorname{div}(\phi \bar{f})=\phi \operatorname{div} \bar{f}+\bar{f} . \operatorname{grad}(\phi)$.
(B) Give the answer in brief: (any two)
(i) Show that $\beta(m+1, n)+\beta(m, n+1)=\beta(m, n)$.
(ii) Write the Euler's Formula and simplify $\sqrt{\frac{1}{4}} \sqrt{\frac{3}{4}}$.
(iii) Find $\operatorname{Curl}\left(x^{2} \overline{\mathrm{i}}+x y z \overline{\mathrm{j}}-\mathrm{z} x \overline{\mathrm{k}}\right)$ at $(1,1,1)$
3. (A) (i) State and prove the Stokes's theorem.
(ii) Evaluate $\int_{c}\left(x^{2}+y^{2}\right) \mathrm{d} x+(x+y) d y$, where C is the boundary of the square having vertices $(\pm 1, \pm 1)$.

OR

(i) State and prove the Green's theorem.
(ii) Evaluate $\iint_{\mathrm{S}} \bar{f}$.ndS, where $\bar{f}=\left(x^{3}-\mathrm{yz},-2 x^{2} \mathrm{y}, \mathrm{z}\right)$ and S is the surface of the cube with faces $x=0, \mathrm{y}=0, \mathrm{z}=0, x=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=\mathrm{a}$.
(B) Give the answer in brief. (any two).
(i) Evaluate $\int x \mathrm{~d} x+y$ dy over the line $\mathrm{y}=x^{2}$ from $(0,0)$ to $(1,1)$.
(ii) Write the statement of the Gauss Theorem.
(iii) Find the unit normal vector of surface $x^{2}+y^{2}+z^{2}=1$.
4. (A) (i) Prove that the general solution of the linear partial differential equation $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ is $\mathrm{F}(\mathrm{u}, \mathrm{v})=0$, where, F is an arbitrary function and $\mathrm{u}(x, \mathrm{y}, \mathrm{z})=\mathrm{c}_{1}$ and $v(x, y, z)=c_{2}$ form a solution of the equations $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.
(ii) Form a partial differential equation by eliminating the arbitrary function F and G from the equation $\mathrm{z}=\mathrm{F}(x y)+\mathrm{G}\left(\frac{x}{\mathrm{y}}\right)$.

OR

(i) Obtain the general solution of $(\mathrm{y}+\mathrm{z}) \mathrm{p}+(\mathrm{z}+x) \mathrm{q}=(x+\mathrm{y})$.
(ii) Eliminate a, b from the equation $x^{2}+(y-a)^{2}+z^{2}=b^{2}$ and obtain the general solution of $x p+y q=z$.
(B) Give the answer in brief. (Any two).
(i) Find order and degree of partial differential equation $x^{3} Z_{x y}-p x+q y=0$.
(ii) Solve $\mathrm{d} x=\mathrm{dy}=\mathrm{dz}$.
(iii) If $x^{2}+x+y-z=0$, then $\mathrm{p}=$ \qquad and $\mathrm{q}=$ \qquad .

