Seat No. : \qquad

ME-114

March-2019
B.Sc., Sem.-III

CC-202 : Mathematics
 (Linear Algebra - I)

Time : 2:30 Hours]
[Max. Marks: 70
સૂચના: (1) આ પ્રશ્નપત્રમાં કુલ ચા૨ પ્રશ્નો છે.
(2) જમણી બાજુના અંક જે-તે પ્રશ્ન-પેટા પ્રશ્નના ગુણ દર્શાવે છે.

1. (A) (1) કોઈપપણ સદિશ અવકાશ V માટે સાબિત કરો કે
(i) $\alpha \overline{0}=\overline{0}$, छरेક અદિશ α भાટे
(ii) $0 u=\overline{0}$, દરેક સદિશ $u \in V$ भાટે.
(iii) $(-1) u=-u$, દરેક સદિશ $u \in V$ માટે.
(2) જો A અને B એ સદિશ અવકાશ V ના ઉપાવકાશો હોય તો સાબિત કરો કે A $\cap B$ પણ Vનો ઉપાવકાશ છે. શું $A \cup B$ એ V નો ઉપાવકાશ છે ? તમારા જવાબનું સમર્થન કરો.

અથવા

(A) (1) સદિશ અવકાશના ઉપગણની વિસ્તૃતિની વ્યાખ્યા આપો. જો S એ સદિશ અવકાશ Vનો અરિક્ત ઉપપણ હોય તો સાબિત કરો કે [S] એ Sને સમાવતો નાનામાં નાનો Vનો ઉપાવકાશ છે.
(2) સાબિત કરો કે $\mathrm{S}=\left\{(x, \mathrm{y}, \mathrm{z}) \in \mathrm{V}_{3} / 2 x+\mathrm{y}-5 \mathrm{z}=0\right\}$ એ V_{3} નો ઉપાવકાશ છે. 7
(B) ટૂંકમાં જવાબ આપો. (ગમે તે બે)
(1) સદિશ અવકાશનો ઉપાવકાશ થવા માટેની આવશ્યક અને પર્યાપ્ત શ૨ત લખો.
(2) $\mathrm{S}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathrm{V}_{3} / x_{2} x_{3}=0\right\}$. શું S એ V_{3} નો ઉપાવકાશ છે ? સમર્થન કરો.
(3) વ્યાખ્યા આપો : પ્રત્યક્ષ સરવાળો.
2. (A) (1) વ્યાખ્યા આપો : સદિશ અવકાશ V નું પરિમાણ, પરિમાણ પ્રમેય લખો અને સાબિત કરો. 7
(2) સાબિત કરો કે ગણ $\mathrm{B}=\{(1,1,1),(1,-1,1),(0,1,1)\}$ એ V_{3} નો આધાર છે.

અથવા

(A) (1) સાબિત કરો કે n-પરિમાણીય સદિશ અવકાશ V માં n-સુરેખ સ્વાયત્ત સદિશોનો ગણ એ Vનો આધાર છે.
(2) ગણ $\mathrm{A}=\{(1,0,1,0),(0,-1,1,0)\}$ ને V_{4} ના આધા૨ સુધીધી વિસ્તૃત કરો.
(B) ટૂંકમાં જવાબ આપો. (ગમે તે બે)
(1) ગણ $\mathrm{A}=\{(1,0,0),(1,1,1),(1,2,3)\}$ સુરેખ સ્વાયત્ત કે સુરેખ અવલંબી છે, ચકાસો.
(2) જો $\mathrm{S}=\left\{x-1, x+1, x^{2}+2\right\}$ હોય તો, S એ $\mathrm{P}_{3}(\mathrm{R})$ નો આધાર છે. કેમ ?
(3) સદિશ અવકાશ V_{2} ના બે ભિન્ન આધાર આપો.
3. (A) (1) સુરેખ પરિવર્તન T એ આધારના ઘટકો પરની તેની કિંમતો દ્વારા સંપૂર્ણ રીતે નિશ્ચિત કરી શકાય છે.
(2) જો $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{3}$ એવું સુરેખ પરિવર્તન હોય કे જેથી $\mathrm{T}(1,1)=(2,0,1)$ અને $\mathrm{T}(2,-1)=(1,-1,1)$ થાય તો $\mathrm{T}(x, y)$ મેળવો.

અથવા

(A) (1) કોટ્યાંક-શૂન્યાંક પ્રમેય લખો અને સાબિત કરો.
(2) જો સુરેખ પરિવર્તન $T: V_{3} \rightarrow V_{3}, T\left(e_{1}\right)=e_{1}+e_{2}, T\left(e_{2}\right)=e_{2}+e_{3}$ અને $T\left(e_{3}\right)=e_{1}$ $+e_{2}+e_{3}$ વ'ડે વ્યાળ્યાયિત છે જ્યાં $\left\{e_{1}, e_{2}, e_{3}\right\}$ એ V_{3} નો પ્રમાણિત આધાર છે. સાબિત કરોકે T व्यસ્ત સંપન્ન છે અને T^{-1} શોધો.
(B) ટૂંકમાં જવાબ આપો. (ગમે તે બે) 3
(1) $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ એ $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=\left(x, \mathrm{y}^{2}, \mathrm{z}^{3}\right)$ વડડ વ્યાખ્યાયિત છે. શું T સુરેખ પરિવર્તન છે ?
(2) સુરેખ પરિવર્તન $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{2}$ એ $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=(x-\mathrm{y}, x-\mathrm{z})$ વડડ વ્યાખ્યાયિત હોય તો, $n(T)$ शोधો.
(3) સુરેખ પરિવર્તન $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ એ $\mathrm{T}(x, y)=(x,-y)$ વડે વ્યાખ્યાયિત હોય તો, T^{-1} શोધો.
4. (A) (1) વ્યાખ્યા આપો :
(i) સુરેખ પરિવર્તન સાથે સંકળાયેલ શ્રેણિાક.
(ii) શ્રેણિક સાથે સંકળાયેલ સુરેખ પરિવર્તન.
(2) सुरेખ પરિવર્તન $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ એ $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=\left(x-\mathrm{y}+\mathrm{z}, 2 x+3 \mathrm{y}-\frac{\mathrm{z}}{2}, x+\mathrm{y}-\right.$

2z) वડડ c्याખ्यાयिત છે. જો $B_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}, \mathrm{B}_{2}=\{(1,1,0)$, $(1,2,3),(-1,0,1)\}$ હોય तो, ($\left.\mathrm{T}: \mathrm{B}_{1}, \mathrm{~B}_{2}\right)$ शोधો.

અથવા

(A) (1) સાબિત કરો કે સદિશ અવકાશ $\mu_{\mathrm{m}, \mathrm{n}}$ નું પરિમાણ mn છે.
(2) श्रેણિક $\mathrm{A}=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 3 & 1 & -1 \\ 2 & 2 & 1\end{array}\right]$ માટે વિસ્તાર ગણણ, શૂન્યાવકાશ, કોટ્યાંક અને શૂન્યાંક મેળવો. 7
(B) ટૂંકમાં જવાબ આપો. (ગમે તે બે)

3
(1) સુરેખ પરિવર્તન $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ એ $\mathrm{T}(x, y)=(x, y)$ वंડે વ્યાખ્યાયिત અને $\mathrm{B}_{1}=\mathrm{B}_{2}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ હોય તો T સાથે સંકળાયેલ શ્રેણિ|ક શોધો.
(2) વ્યાખ્યા આપો : શ્રેણિાનનો વિસ્તાર ગણા.
(3) જો શ્રેણિક $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ એ $\mathrm{n} \times \mathrm{n}$ કક્ષાનો શ્રેણિક હોય કे જેથી $\mathrm{a}_{\mathrm{ij}}=1, \forall \mathrm{i}$ અને j , તो A નો શૂન્યાંક શોધો.
\qquad

ME-114

March-2019

B.Sc., Sem.-III

CC-202 : Mathematics
(Linear Algebra - I)
Time : 2:30 Hours]
[Max. Marks: 70
Instructions : (1) There are four questions.
(2) Figure to the right indicates full marks of the question/sub-question.

1. (A) (1) In any vector space V, prove that
(i) $\alpha \overline{0}=\overline{0}$, for every scalar α.
(ii) $0 u=\overline{0}$, for every vector $u \in V$.
(iii) $(-1) u=-u$, for every vector $u \in V$.
(2) Let A and B be two subspaces of a vector space V then prove that $\mathrm{A} \cap \mathrm{B}$ is also a subspace of V . Is $\mathrm{A} \cup \mathrm{B}$ a subspace of V ? Justify your answer.

OR

(A) (1) Define span of subset of a vector space. If S is a non-empty subset of a vector space V , then prove that $[\mathrm{S}]$ is the smallest subspace of V containing S .7
(2) Prove that $S=\left\{(x, y, z) \in V_{3} / 2 x+y-5 z=0\right\}$ is a subspace of V_{3}. 7
(B) Answer in short: (Any two)
(1) State necessary and sufficient condition to be a subspace of a vector space.
(2) Let $\mathrm{S}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathrm{V}_{3} / x_{2} x_{3}=0\right\}$. Is S a subspace of V_{3} ? Justify.
(3) Define : Direct Sum.
2. (A) (1) Define : Dimension of a vector space V. State and prove dimension theorem.
(2) Prove that the set $B=\{(1,1,1),(1,-1,1),(0,1,1)\}$ is a basis for V_{3}.

OR

(A) (1) Prove that in an n-dimensional vector space V , any set of n linearly independent vectors is a basis of V .
(2) Expand the set $\mathrm{A}=\{(1,0,1,0),(0,-1,1,0)\}$ to a basis of V_{4}.
(B) Answer in short : (Any two)
(1) Check set $\mathrm{A}=\{(1,0,0),(1,1,1),(1,2,3)\}$ is linearly independent or linearly dependent.
(2) If $\mathrm{S}=\left\{x-1, x+1, x^{2}+2\right\}$ then S is basis of $\mathrm{P}_{3}(\mathrm{R})$. Why?
(3) Give two different bases of vector space V_{2}.
3. (A) (1) A linear transformation T is completely determined by its values on the elements of a basis.
(2) Let $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{3}$ be a linear transformation such that $\mathrm{T}(1,1)=(2,0,1)$ and $\mathrm{T}(2,-1)=(1,-1,1)$ then find $\mathrm{T}(x, y)$.

OR

(A) (1) State and prove Rank-Nullity theorem.
(2) Let $T: V_{3} \rightarrow V_{3}$ be a linear transformation defined by $T\left(e_{1}\right)=e_{1}+e_{2}, T\left(e_{2}\right)$
$=e_{2}+e_{3}$ and $T\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a standard basis of V_{3}. Prove that T is non-singular and find T^{-1}.
(B) Answer in short: (Any two)
(1) $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ defined by $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=\left(x, \mathrm{y}^{2}, \mathrm{z}^{3}\right)$. Is T a linear transformation ?
(2) A linear transformation $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{2}$ defined by $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=(x-\mathrm{y}, x-\mathrm{z})$ then find $\mathrm{n}(\mathrm{T})$.
(3) A linear transformation $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ defined by $\mathrm{T}(x, y)=(x,-\mathrm{y})$ then find T^{-1}.
4. (A) (1) Define :
(i) Matrix associated with a linear transformation.
(ii) Linear transformation associated with a matrix.
(2) Let a linear transformation $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ defined by

$$
\begin{aligned}
& \mathrm{T}(x, \mathrm{y}, \mathrm{z})=\left(x-\mathrm{y}+\mathrm{z}, 2 x+3 \mathrm{y}-\frac{\mathrm{z}}{2}, x+\mathrm{y}-2 \mathrm{z}\right) . \text { If } \mathrm{B}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}, \\
& \mathrm{B}_{2}=\{(1,1,0),(1,2,3),(-1,0,1)\} \text { then find }\left(\mathrm{T}: \mathrm{B}_{1}, \mathrm{~B}_{2}\right)
\end{aligned}
$$

OR
(A) (1) Prove that the dimension of vector space $\mu_{\mathrm{m}, \mathrm{n}}$ is mn .
(2) Find the range, kernel, rank and nullity for a matrix $A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 3 & 1 & -1 \\ 2 & 2 & 1\end{array}\right]$.
(B) Answer in short: (Any two)
(1) Let a linear transformation $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ defined by $\mathrm{T}(x, y)=(x, y)$ and $B_{1}=B_{2}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ then obtain matrix associated with T .
(2) Define : Range of a matrix.
(3) Let matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{n} \times \mathrm{n}$ matrix such that $\mathrm{a}_{\mathrm{ij}}=1, \forall \mathrm{i}$ and j , then find nullity of A.

