Seat No. :

MO-116

March-2019

B.Com., Sem.-VI

CC-310 : Statistics (Fundamental of Statistics - IV) (Compulsory) (Old)

Time : 2:30 Hours]

[Max. Marks : 70

- **સૂચના :** (1) જમણી બાજુના અંક પ્રશ્નના ગુણ દર્શાવે છે.
 - (2) સાદુ ગણકયંત્ર વાપરવાની છૂટ છે.
- 1. (A) (1) નિર્ણયનો સિદ્ધાંત એટલે શું ? નિર્ણયના સિદ્ધાંતના ઘટકો સમજાવો.
 - (2) એક વસ્તુની પડતર કિંમત ₹ 10 છે. તેની વેચાણ કિંમત ₹ 15 છે. જો તે વસ્તુ ન વેચાય તો દિવસના અંતે ₹ 8 માં પરત કરવામાં આવે છે. દરરોજની માંગની સંભાવનાનું વિતરણ નીચે પ્રમાણે છે :

માંગ	0	1	2	3	4
સંભાવના	0.15	0.20	0.35	0.25	0.05

તો દરરોજ કેટલી વસ્તુઓ રાખવી જોઈએ ? વળી સંપૂર્ણ માહિતીનું અપેક્ષિત મૂલ્ય (EVPI) ની કિંમત મેળવો.

અથવા

- (1) ટૂંકનોંધ લખો :
 - (i) ગુરૂ-લઘુ સિદ્ધાંત
 - (ii) ગુરૂ-ગુરૂ સિદ્ધાંત
 - (iii) હોર્વિચનો સિદ્ધાંત
 - (iv) લાપ્લાસનો સિદ્ધાંત
- (2) નીચેના વળતર શ્રેણિક પરથી EVPI મેળવો.

પરિસ્થિતિ	ગંભાવના		વ્યૂહ						
		Α	B	С	D				
S ₁	0.25	50	10	60	80				
S ₂	0.40	0	30	45	40				
S ₃	0.35	80	35	30	45				
	1								

MO-116

P.T.O.

7

7

7

- (B) નીચેનામાંથી કોઈપણ **બે**ના જવાબ આપો :
 - (1) જો ત્રણ વ્યૂહોના EMV 800, 860 અને 700 છે. તેની EVPI = 160 તો EPPI ની કિંમત મેળવો.
 - (2) એક વસ્તુની પડતર કિંમત ₹ 40 અને વેચાણ કિંમત ₹ 60 છે. જો વસ્તુના વેચાય તો ₹ 10
 માં પરત આપવામાં આવે છે. વસ્તુની માંગ નીચે મુજબ છે :

માંગ	40	50	60	70
સંભાવના	0.20	0.25	0.5	0.05

જો 50 એકમો બનાવવામાં આવે તો EMV ગણો.

- (3) કોઈ એક સમસ્યાના નિર્ણય અંગે આપેલા એક વ્યૂહ માટે મહત્તમ કિંમત 25 અને ન્યૂનતમ કિંમત 5 છે. હોર્વિચના સિદ્ધાંત અનુસાર તે વ્યૂહની કિંમત 19 હોય તો આશાવાદી અને નિરાશાવાદી અભિગમ ગુણાંકની કિંમત શોધો.
- 2. (A) (1) (i) સામચિક શ્રેણી એટલે શું ? તેની ઉપયોગિતા જણાવો.
 - (ii) ન્યૂનતમ વર્ગોની રીત પર ટૂંકનોંધ લખો.
 - (2) નીચેની માહિતી માટે પાંચ વર્ષની ચલિત સરેરાશની રીતે વલણ અને અલ્પકાલિન વધઘટ શોધો :

વર્ષ	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
વેચાણ	68	76	80	95	108	77	88	95	110	120	99	104

અથવા

- (1) (i) સમજાવો : સામચિક શ્રેણીના ઘટકો
 - (ii) નીચેની માહિતી માટે મોસમી આંકો મેળવો :

สาร์		મોસમ	
પપ	શિયાળો	ઉનાળો	ચોમાસું
2015	35	30	20
2016	50	44	35
2017	60	55	48

(2) નીચેની માહિતી માટે સુરેખાનું અન્વાયોજન કરી વલણની કિંમત મેળવો :

વર્ષ	2000	2004	2008	2012	2016
ઉત્પાદન (એકમો)	35	45	50	65	85

MO-116

7

7

7

- (B) નીચેનામાંથી ગમે તે **બે**ના જવાબ આપો :
 - (1) ચાર મોસમની અલ્પકાલિન વધઘટની સરેરાશ 6.25, -3.58, 7.17 અને -8.5 છે. મોસમી વધઘટ શોધો.
 - (2) વલણ નક્કી કરવા માટે દ્વિઘાતી પરવલય વક્રનું સમીકરણ

 $y = 6.37 + 0.33 (x - 2014) + 0.24 (x - 2014)^2$ છે તો 2020 ના વર્ષ માટે વલણની કિંમત મેળવો.

(3) ત્રિમાસિક માહિતી માટે મોસમી સૂચકઆંક 109.6, 97.1, x, 99.17 હોય તો x ની અંદાજિત
 ડિંમત શોધો.

7

7

7

4

(ii) જીવનનિર્વાહ ખર્ચના સૂચકઆંકની રચના માટેના મુખ્ય મુદ્દાઓની ચર્ચા કરો.

वस्त	આધ	ાાર વર્ષ	ચાલુવર્ષ			
પસ્તુ	ભાવ	ખર્ચ	ભાવ	ખર્ચ		
А	2	40	5	75		
В	4	16	8	40		
С	1	10	2	24		
D	5	25	10	60		

(2) નીચેની માહિતી પરથી લાસ્પેયર, પાશે, માર્શલ-એજવર્થ અને ફિશરના સૂચકઆંકો શોધો : 7

અથવા

(1) (i) સમજાવો : સમય વિપર્યાસ પરીક્ષણ અને પદ વિપર્યાસ પરીક્ષણ

- (ii) જીવનનિર્વાહ ખર્ચ સૂચકઆંકની મર્યાદાઓ જણાવો.
- (2) નીચેની માહિતી પરથી કૌટુંબિક બજેટની રીતે, કુલ ખર્ચની રીતે સૂચકઆંક શોધો :

વસ્ત	0	જથ્થો		
	2015	2018	2015	
A	8	20	5	
В	12	24	15	
С	12	36	3	
D	18	45	10	

- (B) નીચેનામાંથી ગમે તે ત્રણના જવાબ આપો :
 - (1) કયા સૂચકઆંકના સૂત્રો સમય વિપર્યાસ પરીક્ષણનું સમાધાન કરે છે ?
 - (2) "એક વસ્તુના ભાવમાં આધારવર્ષની સરખામણીમાં 175 ટકા વધારો થાય છે. તેથી તેના ચાલુ વર્ષના ભાવનો સૂચકઆંક 175 ગણાય." આ વિધાન સાચું છે કે ખોટું ?
 - (3) સ્થિર આધાર સૂચકઆંક પરથી પરંપરિત આધાર સૂચકઆંક મેળવવાનું સૂત્ર આપો.
 - (4) ડોરબીશ-બાઉલીનો સૂચકઆંક 176.23 અને પાશેનો સૂચકઆંક 181.36 હોય તો લાસ્પેયરના સૂચકઆંકની કિંમત મેળવો.
- 4. (A) (1) સમજાવો :
 - (i) પ્રાચલ અને આગણક
 - (ii) સાર્થકતાની કક્ષા
 - (iii) નિરાકરણીય પરિકલ્પના
 - (2) સિક્કો ઉછાળવાના પ્રયોગમાં છાપ મળવાની સંભાવનાને p વડે દર્શાવવામાં આવે છે. નિરાકરણીય પરિકલ્પના H₀ : p = ¹/₂ વિરુદ્ધ H₁ : p = ²/₃ નું પરીક્ષણ કરવા માટે એક સિક્કાને 10 વખત ઉછાળવામાં આવે છે અને તેમાં જો 8 કે તેથી વધુ વખત છાપ મળે તો H₀ નો અસ્વીકાર કરવામાં આવે છે. પ્રથમ પ્રકારની ભૂલ અને બીજા પ્રકારની ભૂલ શોધો. પરીક્ષણ સામર્થ્ય પણ શોધો.

અથવા

- (1) સમજાવl :
 - (i) નિદર્શ આગણકનો પ્રમાણિત દોષ
 - (ii) પ્રથમ પ્રકારની ભૂલ અને બીજા પ્રકારની ભૂલ
- (2) યદચ્છ ચલ x પોયસન વિતરણને અનુસરે છે. $H_0 : m = 2$ વિરુદ્ધ $H_1 : m = 3$ નું પરીક્ષણ કરવા માટે. કટોકટી પ્રદેશ x > 2 હોય તો પ્રથમ પ્રકારની ભૂલ અને બીજા પ્રકારની ભૂલ શોધો. પરીક્ષણ સામર્થ્ય પણ શોધો. ($e^{-2} = 0.1353$, $e^{-3} = 0.0498$) 7
- (B) નીચેનામાંથી ગમે તે ત્રણના જવાબ આપો :
 - (1) વૈકલ્પિક પરિકલ્પનાની વ્યાખ્યા આપો.
 - (2) સંયુક્ત પરિકલ્પનાની વ્યાખ્યા આપો.
 - (3) 5% અને 1% સાર્થકતાની કક્ષા માટે બે બાજુવાળા કટોકટી પ્રદેશને પ્રમાણ્ય વક્ર દ્વારા દર્શાવો.
 - (4) પરિકલ્પના પરીક્ષણમાં કટોકટી પ્રદેશની વ્યાખ્યા આપો.

7

3

7

7

MO-116

Simple calculator can be used. (A) (1) What is decision theory ? Explain its components.

Figures to the right indicate full marks of the question.

The cost price of an item is \gtrless 10 and its selling price is \gtrless 15. The unsold (2)item can be returned at ₹ 8 at the end of a day. The probability distribution of daily demand is as follows :

Demand	0	1	2	3	4
Probability	0.15	0.20	0.35	0.25	0.05

Decide how many units of an item should be kept, daily. Also find Expected Value under Perfect Information. (EVPI)

OR

Write short note on : (1)

Time : 2:30 Hours]

Instructions: (1)

1.

(2)

- (i) Maxi-min principle
- Maxi-max principle (ii)
- (iii) Hurwitz's principle
- (iv) Laplace principle
- From the following payoff matrix find EVPI. (2)

State of	Probability	Act						
nature	TTODADIIIty	Α	В	С	D			
S ₁	0.25	50	10	60	80			
S ₂	0.40	0	30	45	40			
S ₃	0.35	80	35	30	45			

5

[Max. Marks: 70

Seat No. : _____

MO-116

March-2019

B.Com., Sem.-VI

CC-310 : Statistics (Fundamental of Statistics - IV) (Compulsory) (Old)

7

7

7

- (B) Answer any **two** of the following :
 - (1) If EMV for acts are 800, 860 and 700 and EVPI = 160. Find Expected Profit for Perfect Information.
 - (2) The item costs ₹ 40 per unit and sells at ₹ 60 per unit. If units are not sold it can returned back at ₹ 10 per unit. The demand of an item is given below :

Demand	40	50	60	70
Probability	0.20	0.25	0.50	0.05

Calculate EMV, if 50 units are produced.

- (3) For any problem an act have maximum value 25 and minimum value 5. According to Hurwitz's principle an act have value 19. Find value of optimistic and pessimistic coefficient.
- 2. (A) (1) (i) What do you mean by time series ? Discuss its utility.
 - (ii) Write short note on least square method.
 - (2) Using five yearly moving average method, find trend and short term fluctuations for the following data :

Years	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Sales	68	76	80	95	108	77	88	95	110	120	99	104

OR

- (1) (i) Explain : Components of time series.
 - (ii) Find seasonal indices :

Voor	Seasons						
I Cal	Winter	Summer	Monsoon				
2015	35	30	20				
2016	50	44	35				
2017	60	48					

(2) Find the trends by fitting the straight line equation for the following data : 7

Years	2000	2004	2008	2012	2016
Production (Units)	35	45	50	65	85

6

7

7

- (B) Answer any **two** from the following :
 - (1) The averages of short term variations for four seasons are 6.25, -3.58, 7.17 and -8.5. Find seasonal variations.
 - (2) If an equation of second degree parabola for determining trend is
 - $y = 6.37 + 0.33 (x 2014) + 0.24 (x 2014)^2$ then find the trend for the year 2020.
 - (3) The seasonal indices for four quarters are 109.6, 97.1, x, 99.17. Find approximate value of x.
- 3. (A) (1) (i) What is index number ? Give its uses.
 - (ii) For constructing cost of living index number discuss the important points.
 - (2) Find Laspeyer's, Paasche's, Marshall-Edgeworth and Fisher's index numbers from the following data :

Itoms	Base	e Year	Current Year				
Items	Price Expense		Price	Expense			
А	2	40	5	75			
В	4	16	8	40			
С	1	10	2	24			
D	5	25	10	60			
OR							

- (1) (i) Explain : Time Reversal Test and Factor Reversal Test
 - (ii) State the limitations of cost of living index number.

7

(2) Calculate the index number using both the expenditure method and family budget method :

Itoms	Pı	Quantity	
Items	2015	2018	2015
А	8	20	5
В	12	24	15
С	12	36	3
D	18	45	10

7

7

7

- (B) Answer any **three** from the following :
 - (1) Which index number satisfies time reversal test ?
 - (2) "The price of a commodity increases 175% as compared to base years price, then the index number for current year is 175". Is the statement true or false.
 - (3) Give the formula of converting fixed base index numbers into chain base index number.
 - (4) If Dorbish-Bowly index number 176.23 and Pasche's index number is 181.36 then find the value of Laspeyer's index number ?
- 4. (A) (1) Explain :
 - (i) Parameter and Estimator
 - (ii) Level of significance
 - (iii) Null Hypothesis
 - (2) In an experiment of tossing a coin, p denotes the probability of getting head. In order to test the Null Hypothesis $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{2}{3}$. The coin is tossed 10 times and if 8 or more trials give heads then H_0 is rejected. Determine probabilities of type-I error, type-II error and power of test.

OR

- (1) Explain :
 - (i) Standard error of a sample statistic.
 - (ii) Type-I error and type-II error.
- (2) A random variable x follows the Poisson distribution. Test the hypothesis H_0 : m = 2 against H_1 : m = 3 and critical region x > 2 then find the probability for type-I and type-II error. Also find power of test. ($e^{-2} = 0.1353$, $e^{-3} = 0.0498$)
- (B) Answer any three from the following :
 - (1) Define alternative hypothesis.
 - (2) Define composite hypothesis.
 - (3) Draw normal curve to indicate two sided test corresponding to 5% and 1% level of significance.

8

(4) Define critical region in testing of hypothesis.

7

7

7

Seat No. : _____

MO-116

March-2019

B.Com., Sem.-VI

CC-310 : Statistics (Fundamental of Statistics - IV) (Compulsory) (New)

Time: 2:30 Hours]

[Max. Marks : 70

- **સૂચના :** (1) જમણી બાજુના અંક પ્રશ્નના ગુણ દર્શાવે છે.
 - (2) સાદુ ગણકયંત્ર વાપરવાની છૂટ છે.
- 1. (A) (1) નિર્ણયનો સિદ્ધાંત એટલે શું ? નિર્ણયના સિદ્ધાંતના ઘટકો સમજાવો.
 - (2) એક વસ્તુની પડતર કિંમત ₹ 10 છે. તેની વેચાણ કિંમત ₹ 15 છે. જો તે વસ્તુ ન વેચાય તો દિવસના અંતે ₹ 8 માં પરત કરવામાં આવે છે. દરરોજની માંગની સંભાવનાનું વિતરણ નીચે પ્રમાણે છે :

·	·	1	2	5	4
સંભાવના 0).15	0.20	0.35	0.25	0.05

તો દરરોજ કેટલી વસ્તુઓ રાખવી જોઈએ ? વળી સંપૂર્ણ માહિતીનું અપેક્ષિત મૂલ્ય (EVPI) ની કિંમત મેળવો.

અથવા

- (1) ટૂંકનોંધ લખો :
 - (i) ગુરૂ-લધુ સિદ્ધાંત
 - (ii) ગુરૂ-ગુરૂ સિદ્ધાંત
 - (iii) હોર્વિચનો સિદ્ધાંત
 - (iv) લાપ્લાસનો સિદ્ધાંત
- (2) નીચેના વળતર શ્રેણિક પરથી EVPI મેળવો.

પરિસ્થિતિ	ગંભાવના	વ્યૂહ					
		Α	B	С	D		
S ₁	0.25	50	10	60	80		
S ₂	0.40	0	30	45	40		
S ₃	0.35	80	35	30	45		

9

P.T.O.

7

7

7

- (B) નીચેનામાંથી કોઈપણ **બે**ના જવાબ આપો :
 - (1) જો ત્રણ વ્યૂહોના EMV 800, 860 અને 700 છે. તેની EVPI = 160 તો EPPI ની કિંમત મેળવો.
 - (2) એક વસ્તુની પડતર કિંમત ₹ 40 અને વેચાણ કિંમત ₹ 60 છે. જો વસ્તુના વેચાય તો ₹ 10
 માં પરત આપવામાં આવે છે. વસ્તુની માંગ નીચે મુજબ છે :

માંગ	40	50	60	70
સંભાવના	0.20	0.25	0.5	0.05

જો 50 એકમો બનાવવામાં આવે તો EMV ગણો.

(3) કોઈ એક સમસ્યાના નિર્ણય અંગે આપેલા એક વ્યૂહ માટે મહત્તમ કિંમત 25 અને ન્યૂનતમ કિંમત 5 છે. હોર્વિચના સિદ્ધાંત અનુસાર તે વ્યૂહની કિંમત 19 હોય તો આશાવાદી અને નિરાશાવાદી અભિગમ ગુણાંકની કિંમત શોધો.

2. (A) (1) સમજાવો:

- (i) પ્રાચલ અને આગણક
- (ii) સાર્થકતાની કક્ષા
- (iii) નિરાકરણીય પરિકલ્પના
- (2) 900 એકમોના એક નિદર્શમાં એકમોની સરેરાશ લંબાઈ 3.4 સેમી જણાય છે. શું આ યદચ્છ નિદર્શ સરેરાશ 3.25 સેમી લંબાઈ અને 2.61 સેમી પ્રમાણિત વિચલન ધરાવતી સમષ્ટિમાંથી લેવાયો છે એમ કહી શકાય ? (|Z_t|=1.96)

અથવા

- (1) સમજાવો:
 - (i) નિદર્શ આગણકનો પ્રમાણિત દોષ
 - (ii) પ્રથમ પ્રકારની ભૂલ અને બીજા પ્રકારની ભૂલ
- (2) 500 અને 1000 કદના બે નિદર્શો માટે મધ્યકોની કિંમતો અનુક્રમે 66.5" અને 67.5" છે. આ બંને નિદર્શો જેનું પ્રમાણિત વિચલન 2.5" હોય તેવી સમષ્ટિમાંથી લેવાયા છે, તેમ કહી શકાય? (|Z_t|=1.96)
- (B) નીચેનામાંથી કોઈપણ **બે**ના જવાબ આપો :
 - (1) પરીક્ષણ સામર્થ્યની કિંમત 0.58 હોય તો બીજા પ્રકારની ભૂલની સંભાવના શોધો.
 - (2) એક હોસ્પિટલમાં જન્મેલા 1000 બાળકોમાંથી 560 છોકરાઓ છે. "છોકરાઓ અને છોકરીઓનું જન્મપ્રમાણ સરખું છે." તે પરીક્ષણ માટે S.E._(p) શોધો.
 - (3) 5% અને 1% સાર્થકતાની કક્ષા માટે બે બાજુવાળા કટોકટી પ્રદેશને પ્રમાણ્ય વક્ર દ્વારા દર્શાવો.

MO-116

7

7

7

4

3.	(A)	(1)	(i) રમતના સિદ્ધાંતના સંદર્ભમાં પલાણ્ય બિંદુ સમજાવો.	7
			(ii) રમતના સિદ્ધાંતની ધારણાઓ જણાવો.	
		(2)	રમતના પ્રશ્નનો ઉકેલ મેળવો અને રમતની કિંમત મેળવો :	7
			ખેલાડી B	
			B1B2B3B4 $A_1 \begin{bmatrix} 5 & 1 & 7 & 4 \\ 9 & 4 & 15 & 6 \\ 0 & 5 & 3 & 9 \\ A_4 \begin{bmatrix} 5 & 0 & 10 & 4 \end{bmatrix}$	
			અથવા	
		(1)	(i) રમતનો ઉકેલ મેળવવા માટે સરસાઈનો સિદ્ધાંત સમજાવો.	7
			(ii) રમતનો ઉંકેલ મેળવવા માટે બીજગણિતની રીત વર્ણવો.	
		(2)	રમતના પ્રશ્નનો ઉંકેલ મેળવો અને રમતની કિંમત શોધો :	7
			ખેલાડી B	
			B_1 B_2 B_3 B_4 A_1 1 0 2 -2 A_2 A_2 1 2 0 2 A_3 A_2 1 2 0 2 A_4 -2 2 -2 1 2	
	(B)	નીચેન	ામાંથી કોઈપણ ત્રણ ના જવાબ આપો :	3
		(1)	રમત સમતોલ ક્યારે કહેવાય ?	
		(2)	રમત નિર્ણયાત્મક ક્યારે કહેવાય ?	
		(3)	"રમતને એક કરતાં વધુ પલાણ્ય બિંદુ હોઈ શકે છે." આ વિધાન ખરૂં છે કે ખોટું ?	
		(4)	વળતર શ્રેણિકનું કદ ઘટાડવા માટે કયા સિદ્ધાંતનો ઉપયોગ થાય છે ?	
4.	(A)	(1)	(i) સમજાવો : અદિશ શ્રેણિક, વ્યસ્ત શ્રેણિક, વિકર્ણી શ્રેણિક, સંમિત શ્રેણિક. (ii) જો A = $\begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix}$ અને B = $\begin{bmatrix} 1 & 2 & -6 \\ 0 & -1 & 3 \end{bmatrix}$ 3A - 4B શોધો.	7

P.T.O.

(2)
$$\widehat{\mathbf{M}} \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
તો સાબિત કરો કે

$$\mathbf{A} (\operatorname{adj} \mathbf{A}) = (\operatorname{adj} \mathbf{A}) \mathbf{A} = |\mathbf{A}| \mathbf{I}.$$
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

(ii)
$$\widehat{\mathcal{M}} A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -4 & -5 & 7 \end{bmatrix}$$
 અને $B = \begin{bmatrix} 2 & 1 & 3 \\ 6 & -1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$ તો સાબિત કરો કે,
(A + B)^T = B^T + A^T.

$$x - y = 3$$
, $2x + 3y + 4z = 17$, $y + 2z = 7$.

(B) નીચેનામાંથી કોઈપણ ત્રણના જવાબ આપો :

(1)
$$A = \begin{bmatrix} -9 & 4 \\ 11 & 1 \end{bmatrix}$$
 નો સહઅવયવજ શ્રેણિક મેળવો.
(2) શ્રેણિક $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & -4 & -5 \\ 2 & -5 & 0 \end{bmatrix}$ ઘટક -4 માટેના ઉપનિશ્ચાયકની કિંમત જણાવો.

(4)
$$\widehat{\mathbf{M}} \mathbf{A} = \begin{bmatrix} 4 & -5 \end{bmatrix}$$
 અને $\mathbf{B} = \begin{bmatrix} -6 \\ 7 \end{bmatrix}$ તો \mathbf{AB} કિંમત મેળવો.

MO-116

MO-116

From the following payoff matrix find EVPI.								
State of	Probability	Act						
nature	TTODADIIIty	Α	B	C	D			
S ₁	0.25	50	10	60	80			
S ₂	0.40	0	30	45	40			
S ₃	0.35	80	35	30	45			

13

(2) F

of daily demand is as follows :

Value under Perfect Information (EVPI).

Demand 0 1 2 3 4 **Probability** 0.15 0.20 0.35 0.25 0.05

Decide how many units of an item should be kept, daily. Also find Expected

The cost price of an item is \gtrless 10 and its selling price is \gtrless 15. The unsold item can be returned at ₹ 8 at the end of a day. The probability distribution

OR

- (1) Write short note on :

Time: 2.30 Hours]

(A) (1)

(2)

(1)

(2)

Instructions :

1.

- Maxi-min principle (i)
- (ii) Maxi-max principle
- (iii) Hurwitz's principle
- (iv) Laplace principle

What is decision theory? Explain its components.

Simple calculator can be used.

CC-310 : Statistics (Fundamental of Statistics - IV)

(Compulsory) (New)

Figures to the right indicate full marks of the question.

Seat No. :

March-2019

B.Com., Sem.-VI

[Max. Marks: 70

7

7

7

7

P.T.O.

- (B) Answer any **two** of the following :
 - (1) If EMV for acts are 800, 860 and 700 and EVPI = 160. Find Expected Profit for Perfect Information.
 - (2) The item costs ₹ 40 per unit and sells at ₹ 60 per unit. If units are not sold it can returned bark at ₹ 10 per unit. The demand of an item is given below :

Demand	40	50	60	70
Probability	0.20	0.25	0.50	0.05

Calculate EMV, if 50 units are produced.

(3) For any problem an act have maximum value 25 and minimum value 5. According to Hurwitz's principle an act have value 19. Find value of optimistic and pessimistic coefficient.

2. (A) (1) Explain :

- (i) Parameter and Estimator
- (ii) Level of significance
- (iii) Null Hypothesis
- (2) A sample of 900 observations is found to have a mean of 3.4 cm. Can it be reasonably regarded a simple sample from a population with mean 3.25 cm and S.D. 2.61 cm. ($|Z_t| = 1.96$)

OR

11	D 1 ·	
11) Hynlain	•
(1	j Explain	•

- (i) Standard error of a statistic.
- (ii) Type-I and Type-II errors.
- (2) The means of the large samples of sizes 500 and 1000 are respectively 66.5 inches and 67.5 inches. Can the samples be regarded as drawn from the same population of S.D. 2.5 inches ?

$$(|Z_t| = 1.96)$$

- (B) Answer any **two** from the following :
 - (1) The value of the power of test is 0.58. Find the value of type-II error.
 - (2) In a hospital out of 1000 new born babies 560 are boys. Compute the value S.E._(p) to test "The births of boy and girls are in equal proportion".
 - (3) Draw normal curve to indicate two sided test corresponding to 5% and 1% level of significance.

7

7

7

7

3.	(A)	(1)	(i) Exp	lain the sa	ddle p	oint i	n the	context	of game th	neory.	7
			(ii) State the assumptions of game theory.								
		(2)	Solve the	problem a	nd ob	tain v	alue o	of game			7
					Pla	yer B					
				B ₁	B ₂	B ₃	B_4				
				$A_1 \begin{bmatrix} 5 \end{bmatrix}$	1	7	4]				
				A ₂ 9	4	15	6				
			Player A	$A_3 \mid 0$	5	3	9				
				$A_4 \begin{bmatrix} 5 \end{bmatrix}$	0	10	4				
				_		OR	-				
		(1)	(i) Exp	lain the pr	incipl	e of d	omin	ance in t	he solutio	n of game.	7
			(ii) Exp	lain algeb	ric me	thod i	in the	context	of game t	heory.	
		(2)	Solve the	problem a	nd ob	tain v	alue o	of game.			7
					Pl	ayer	B				
				В	B B	$2 B_2$	В	4			
				$A_1 \begin{bmatrix} 1 \end{bmatrix}$	0	2	_	2]			
				$A_2 \mid 1$	2	0	2				
			Player A	$A_3 = 2$	0	2	_	2			
				$A_4 \begin{bmatrix} - \\ - \end{bmatrix}$	2 2	-2	1				
	(B)	Ansv	wer any thr	ee from th	e foll	owing	:				3
		(1)	When the	game is sa	aid to	be fai	r ?				
		(2)	When the	game is sa	aid to	be str	ictly	determin	able?		
		(3)	"Game ha	s more that	n one	sadd	le poi	nt". Is th	ne stateme	nt true or fals	se?
		(4)	Which pro	operty is u	sed to	reduc	e the	size of t	the payoff	matrix.	
4.	(A)	(1)	(i) Exp	lain : Sca	lar ma	trix, 1	[nver	se matrix	x, Diagon	al matrix, Sy	mmetric
			mati	rix							7
			(ii) If A	$=\begin{bmatrix} 2 & 3 \end{bmatrix}$	³ 1	and	$\mathbf{B} = $	1 2	-6		
				L0 –	1 5			_0 _1	3]		
			find	3A-4B.							
		(2)	If $A = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2\\ -5 \end{bmatrix}$ the	n prov	e that	;				
			A (adj A)	- = (adj A)	A = .	A I.					7
					ſ	OR					
MC)-116					1:	5				P.T.O.

(1) (i) Write difference between matrix and determinant. $\begin{bmatrix} 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$

(ii) If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -4 & -5 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 3 \\ 6 & -1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$ then,
prove $(A + B)^{T} = B^{T} + A^{T}$.

(2) Solve the following equations using matrix inverse x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7.

(B) Answer any **three** from the following :

(1) Find adjoint of A =
$$\begin{bmatrix} -9 & 4\\ 11 & 1 \end{bmatrix}$$
.
(2) Given a matrix A = $\begin{bmatrix} 0 & 1 & 2\\ 1 & -4 & -5\\ 2 & -5 & 0 \end{bmatrix}$ calculate the minor for the element -4.

(3) "If A and B are two square matrix then AB and BA are always equal." Is the statement true or false ?

(4) If A =
$$\begin{bmatrix} 4 & -5 \end{bmatrix}$$
 and B = $\begin{bmatrix} -6 \\ 7 \end{bmatrix}$ then find AB.

3

7