JG-121

January-2021

B.Sc., Sem.-V

CC-301 : Physics

(Mathematical Physics, Classical Mechanics, Quantum Mechanics) (New Course)

Time : 2 Hours]

[Max. Marks : 50

- **સૂચના :** (1) માસ્ક પહેરો અને એકબીજાથી સલામત અંતરે બેસો.
 - (2) સંજ્ઞાઓના અર્થ પ્રચલિત પ્રણાલિકા મુજબ છે.

વિભાગ – I

JG-	121	1 P.T	.0.
	(B)	ડી એલેમ્બર્ટનો સિદ્ધાંત મેળવો.	7
5.	(A)	પ્રતિબંધો (Constraints) એટલે શું ? ઉદાહરણ આપી તેના પ્રકારો સમજાવો.	7
	(B)	રોન્સ્ક્રીયન (Wronskian) પ્રમેયનું કથન લખો અને સાબિત કરો.	7
4.	(A)	$rac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} + 2x rac{\mathrm{d}y}{\mathrm{d}x} + 2\mathrm{y} = 0$ નો ધાત શ્રેણી દ્વારા ઉકેલ મેળવો.	7
		પ્રકાર નક્કો કરા.	1
	(B)	$x^2 \frac{dy}{dx^2} + \frac{dy}{dx} + (x^2 - m^2) y = 0$ માટે અનંત અંતરે આવેલા બિંદુ માટે એકોકી (singularity) નો	-
		dx^2 d^2y dy dy dy dy dy dy dy d	
3.	(A)	$\frac{d^2y}{dx^2} + (\tau - x^2) y = 0, $ જ્યાં τ અચળાંક છે, નો ઘાત શ્રેણી દ્વારા ઉકેલ મેળવો.	7
	(B)	ભૌતિકશાસ્ત્રની વિવિધ શાખામાં આવતા વિકલ સમીકરણો પર ટૂંકનોંધ લખો.	7
	()	કરો.	7
2.	(A)	હેલ્મહોલ્ટજ (Helmholtz) સમીકરણને ગોલીય ધ્રવીય (spherical polar) યામોમાં વિભાજિત	
	(B)	ચલવિભાજનની રીતથી વિસરણ સમીકરણને અવકાશ અને સમય ભાગમાં વિભાજિત કરો.	7
1.	(A)	હેલ્મહોલ્ટ્જ (Helmholtz) સમીકરણને કાર્ટેર્સિયાન (Cartesian) યામોમાં વિભાજિત કરો.	7
	કોઈપ	ણ ત્રણ પ્રશ્નોના જવાબ આપો.	

6.	(A) (B)	પરિભ્રમણીય (Rotating) યામ પદ્ધતિ સમજાવો અને અવકાશમાં કોઈ p બિંદુએ એવો સંબંધ મેળવો કે જેની મદદથી વેગ અને પ્રવેગના સમીકરણો મેળવી શકાય. ગતિઉર્જાનું સર્વસામાન્ય સમીકરણ મેળવો અને તેમાં રહેલ ત્રણ પદોનું મહત્વ સમજાવો.	7 7
7.	(A)	ઓબ્જર્વેબ્લ્સ (Observable) A અને B ના યુગ્મ (Pair) માટે uncertainty સિદ્ધાંત દર્શાવતું સામાન્ય કથન માટેનું સમીકરણ મેળવો.	7
	(B)	ક્વોન્ટમ મિકેનિક્સની પૂર્વાધારણા 4 ચર્ચો અને તેનું સૂત્ર મેળવો.	7
8.	(A)	સરળ આવર્તદોલક માટે ઊર્જા આઇગન વિધેયનું સૂત્ર તારવો.	7
	(B)	પેરિટીકારક (parity operator) સમજાવો અને દર્શાવો કે બધા જ Ψ માટે $PL_z = L_z P$.	7
		વિભાગ – II	
9.	કોઈપ	ણ આઠ (eight) પ્રશ્નના જવાબ ટૂંકમાં આપો :	8
	(1)	નળાકારીય (Cylindrical) યામો માટે $ abla^2$ નું સૂત્ર લખો.	
	(2)	પરવલચિક (Parabolic) યામોના સૂત્ર લખો.	
	(3)	પરવલયિક (Parabolic) યામો માટે વ્યુત્ક્રમ પરિવર્તન (Inverse transformation) ના સૂત્ર લખો.	
	(4)	પરવલયિક (Parabolic) યામો માટે સ્કેલ ગુણક (Scale factor) ના સૂત્ર લખો.	
	(5)	દ્વિતીય (Second) ક્રમના વિકલ સમીકરણના બે ઉકેલો y ₁ અને y ₂ રેખીય રીતે સ્વતંત્ર હોય તો તેના માટેનો સામાન્ય ઉકેલ લખો.	
	(6)	સામાન્ય બિંદુ અને એકાંકી બિંદુની વ્યાખ્યા આપો.	
	(7)	નિયમિત એકાંકી બિંદુ અને અનિયમિત એકાંકી બિંદુની વ્યાખ્યા આપો.	
	(8)	$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - \frac{1}{4})y = 0$ નો સામાન્ય ઉકેલ લખો.	
	(9)	ચક્રીય યામોની વ્યાખ્યા આપો.	
	(10)	મુક્તતાના અંશોની વ્યાખ્યા આપો.	
	(11)	$x-\mathrm{y}$ સમતલમાં ગતિ કરતા સાદા લોલક માટે પ્રતિબંધના સમીકરણ લખો.	
	(12)	$\omega imes (\omega imes r)$ ને પ્રવેગ કહે છે. (ખાલી જગ્યા પૂરો.)	
	(13)	ક્યારે a ની ડીજનરેસી સંપૂર્ણપણે દુર થઈ કહેવાય ?	

- (14) $(\Delta x) (\Delta p) \ge$ ______ ખાલી જગ્યા પૂરો.

JG-121

January-2021

B.Sc., Sem.-V

CC-301 : Physics

(Mathematical Physics, Classical Mechanics, Quantum Mechanics) (New Course)

Time : 2 Hours]

[Max. Marks : 50

Instructions : (1) Wear mask and keep safe distance to each other.

(2) Symbols have their usual meaning.

SECTION – I

Answer any three.

JG-1	21	3 P.T.	0.
	(B)	Obtain D'Alembert's principle.	7
5.	(A)	What are Constraints ? Explain giving the examples types of constraints.	7
	(B)	State and prove Wronskian theorem.	7
4.	(A)	Solve, $\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + 2y = 0$, using the power series method.	7
		point at infinity.	7
	(B)	Check the nature of singularity of equation $x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + (x^2 - m^2) y = 0$ for the	
3.	(A)	Solve, $\frac{d^2y}{dx^2} + (\tau - x^2) y = 0$, where τ is constant, using the power series method.	7
	(B)	Write a notes on differential equations occurring in different branch of physics.	7
2.	(A)	Separate the Helmholtz equation in Spherical polar coordinates.	7
	(B)	Using the method of separation of variable, separate the diffusion equation into space and time parts.	7
1.	(A)	Separate the Helmholtz equation in Cartesian coordinates.	7

6.	(A)	Explain rotating coordinate system and obtain relation which can be used to obtain expressions for velocity and acceleration of the particle situated at the point (p) in space.	7
	(B)	Obtain a general expression for kinetic energy and explain the significance of three terms involved in it.	7
7.	(A)	Obtain the general statement of the uncertainty principle for any pair of observable A, B.	7
	(B)	Explain fourth postulate of quantum mechanics and obtain expression for it.	7
8.	(A) (B)	Derive energy eigen functions of harmonic oscillator. Explain parity operator and show that for all Ψ , $PL_z = L_zP$.	7 7

SECTION – II

9. Answer any **eight** in short.

(1) Write ∇^2 for cylindrical coordinate system.

- (2) Write expressions for parabolic coordinates.
- (3) Write expressions for inverse transformation for parabolic coordinates.
- (4) Write scale factor for parabolic coordinates.
- (5) Two solutions of second order differential equation y_1 and y_2 are linearly independent then write general solution for it.
- (6) Define ordinary point and singular point.
- (7) Define regular singular and irregular singular point.

(8) Write general solution of,
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + \left(x^2 - \frac{1}{4}\right)y = 0.$$

- (9) Define cyclic coordinates.
- (10) Define degrees of freedom.
- (11) Write the constraint equations for a simple pendulum moving in x y plane.

(12) $\omega \times (\omega \times r)$ is called ______ acceleration. (Fill in the blank)

- (13) When the degeneracy of a is called completely removed ?
- (14) $(\Delta x) (\Delta p) \ge$ _____. (Fill in the blank)
- (15) $\left(i\hbar\frac{\partial}{\partial t},t\right) =$ _____. (Fill in the blank)
- (16) $[L_x, L_y] =$ _____. (Fill in the blank)

8

JG-121

January-2021

B.Sc., Sem.-V

CC-301 : Physics

(Mathematical Physics, Classical Mechanics, Quantum Mechanics) (Old Course)

Time : 2 Hours]

[Max. Marks : 50

- **સૂચના :** (1) માસ્ક પહેરો અને એકબીજાથી સલામત અંતરે બેસો.
 - (2) સંજ્ઞાઓના અર્થ પ્રચલિત પ્રણાલિકા મુજબ છે.

વિભાગ – I

કોઈપણ **ત્રણ** પ્રશ્નોના જવાબ આપો.

JG-1	21	5 P.T.C	О.
	(B)	ડી એલેમ્બર્ટનો સિદ્ધાંત મેળવો.	7
5.	(A)	પ્રતિબંધો (Constraints) એટલે શું ? ઉદાહરણ આપી તેના પ્રકારો સમજાવો.	7
	(B)	રોન્સ્ક્રીયન (Wronskian) પ્રમેયનું કથન લખો અને સાબિત કરો.	7
		$dx^2 = dx$	
4.	(A)	$\frac{d^2y}{dt^2} + 2x \frac{dy}{dt^2} + 2y = 0$ નો ધાત શ્રેણી દ્વારા ઉકેલ મેળવો.	' 7
		પ્રકાર નક્કી કરો	7
	(B)	$x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + (x^2 - m^2) y = 0$ માટે અનંત અંતરે આવેલા બિંદુ માટે એકાંકી (singularity) નો	
3.	(A)	$rac{{ m d}^2 y}{{ m d} x^2} + (au - x^2) \; y = 0,$ જ્યાં $ au$ અચળાંક છે, નો ઘાત શ્રેણી દ્વારા ઉકેલ મેળવો.	7
	(B)	ભૌતિકશાસ્ત્રની વિવિધ શાખામાં આવતા વિકલ સમીકરણો પર ટૂંકનોંધ લખો.	7
		કરો.	7
2.	(A)	હેલ્મહોલ્ટ્જ (Helmholtz) સમીકરણને ગોલીય ધ્રુવીય (spherical polar) યામોમાં વિભાજિત	
	(B)	ચલવિભાજનની રીતથી વિસરણ સમીકરણને અવકાશ અને સમય ભાગમાં વિભાજિત કરો.	7
1.	(A)	હેલ્મહોલ્ટ્જ (Helmholtz) સમીકરણને કાર્ટસિયન (Cartesian) યામોમાં વિભાજિત કરો.	7

5

6.	(A)	ટોર્ક દ્વારા જે દરે કાર્ય થાય છે તે અને સમય સાથે ગતિ ઉર્જામાં થતા ફેરફારનો સંબંધ દર્શાવતું સૂત્ર તારવો	7
	(B)	તારવા. ગતિ ઉર્જાનું સર્વસામાન્ય સમીકરણ મેળવો અને તેમાં રહેલ ત્રણ પદોનું મહત્વ સમજાવો.	, 7
7.	(A)	સરળ આવર્તદોલક માટે ઉર્જા આઇગન મૂલ્યો માટેનું સમીકરણ મેળવો.	7
	(B)	ટૂંકનોંધ લખો : લેડર કારકો	7
8.	(A)	સરળ આવર્તદોલક માટે ઊર્જા આઇગન વિધેયનું સૂત્ર તારવો.	7
	(B)	પેરિટીકારક (parity operator) સમજાવો અને દર્શાવો કે બધા જ Ψ માટે PL _z = L _z P.	7

વિભાગ – II

- 9. કોઈપણ આઠ (eight) પ્રશ્નોના જવાબ ટૂંકમાં આપો :
 - (1) नणा
sारीय (Cylindrical) याभो भाटे ∇^2 नुं सूत्र લખो.
 - (2) પરવલચિક (Parabolic) યામોના સૂત્ર લખો.
 - (3) પરવલચિક (Parabolic) યામો માટે વ્યુત્ક્રમ પરિવર્તન (Inverse transformation) ના સૂત્ર લખો.

8

- (4) પરવલચિક (Parabolic) યામો માટે સ્કેલ ગુણક (Scale factor) ના સૂત્ર લખો.
- (5) દ્વિતીય (Second) ક્રમના વિકલ સમીકરણના બે ઉકેલો y₁ અને y₂ રેખીય રીતે સ્વતંત્ર હોય તો તેના માટેનો સામાન્ય ઉકેલ લખો.
- (6) સામાન્ય બિંદુ અને એકાંકી બિંદુની વ્યાખ્યા આપો.
- (7) નિયમિત એકાંકી બિંદુ અને અનિયમિત એકાંકી બિંદુની વ્યાખ્યા આપો.

(8)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \left(x^2 - \frac{1}{4}\right) y = 0$$
 નો સામાન્ય ઉકેલ લખો.

- (9) ચક્રીય યામોની વ્યાખ્યા આપો.
- (10) મુક્તતાના અંશોની વ્યાખ્યા આપો.
- (11) x y સમતલમાં ગતિ કરતા સાદા લોલક માટે પ્રતિબંધના સમીકરણ લખો.
- (12) દઢ પદાર્થની વ્યાખ્યા આપો.
- (13) ત્રિપરિમાણમાં વિકલનકારક P અને E લખો.
- (14) [x, p] = _____ ખાલી જગ્યા પૂરો.
- (15) સુસંબદ્ધ સ્થિતિઓ (coherent states) એટલે શું ?
- (16) શૂન્ચબિંદુ ઉર્જાની વ્યાખ્યા આપો.

JG-121

January-2021

B.Sc., Sem.-V

CC-301 : Physics

(Mathematical Physics, Classical Mechanics, Quantum Mechanics) (Old Course)

Time : 2 Hours]

[Max. Marks : 50

Instructions : (1) Wear mask and keep safe distance to each other.

(2) Symbols have their usual meaning.

SECTION – I

Answer any three.

JG-1	21	7 P.T	. 0.
	(B)	Obtain D'Alembert's principle.	7
5.	(A)	What are Constraints ? Explain giving the examples types of constraints.	7
	(B)	State and prove Wronskian theorem.	7
4.	(A)	Solve, $\frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + 2y = 0$, using the power series method.	7
		$x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + (x^2 - m^2) y = 0$ for the point at infinity.	7
	(B)	Check the nature of singularity of equation	
3.	(A)	Solve, $\frac{d^2y}{dx^2} + (\tau - x^2) y = 0$, where τ is constant, using the power series method.	7
	(B)	Write a notes on differential equations occurring in different branch of physics.	7
2.	(A)	Separate the Helmholtz equation in Spherical polar coordinates.	7
	(B)	Using the method of separation of variable, separate the diffusion equation into space and time parts.	7
1.	(A)	Separate the Helmholtz equation in Cartesian coordinates.	7

6.	(A)	Establish (Derive) a relation between the rate at which work done by the torque and the rate of change of kinetic energy with respect to time.	7
	(B)	Obtain a general expression for kinetic energy and explain the significance of three terms involved in it.	7
7.	(A)	Derive an expression for the energy eigen values of the simple harmonic oscillator.	7
	(B)	Write a notes on Ladder operator.	7
8.	(A)	Derive energy eigen functions of harmonic oscillator.	7
	(B)	Explain parity operator and show that for all Ψ , $PL_z = L_zP$.	7

SECTION – II

8

9. Answer any **eight** in short.

- (1) Write ∇^2 for cylindrical coordinate system.
- (2) Write expressions for parabolic coordinates.
- (3) Write expressions for inverse transformation for parabolic coordinates.
- (4) Write scale factors for parabolic coordinates.
- (5) Two solutions of second order differential equation y_1 and y_2 are linearly independent then write general solution for it.
- (6) Define ordinary point and singular point.
- (7) Define regular singular and irregular singular point.

(8) Write general solution of
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + \left(x^2 - \frac{1}{4}\right)y = 0.$$

- (9) Define cyclic coordinates.
- (10) Define degrees of freedom.
- (11) Write two constraint equations for a simple pendulum moving in x y plane.
- (12) Define rigid body.
- (13) In three dimensions write the differential operators P and E.
- (14) [x, p] =_____. (Fill in the blank)
- (15) What is coherent states ?
- (16) Define zero-point energy.