Seat No. : _____

JG-122 January-2021 B.Sc., Sem.-V CC-301 : Mathematics (Linear Algebra – II)

Time : 2 Hours]

[Max. Marks : 50

7

- **Instruction**: (1) Attempt any **three** questions from questions 1 to 8.
 - (2) Question 9 is compulsory question.
 - (3) Notations are usual everywhere.
 - (4) The Figures to the right indicate marks of the question/sub-question.

1. (A) Define a linear functional and show that the trace function tra : $\mu_{n,n} \rightarrow R$ defined as tra $A = \sum_{i=1}^{n} a_{i,i}$, for each square matrix $A = (a_{ij}) \in \mu_{n,n}$ is a linear functional. 7

(B) If a linear map $T : V_3 \rightarrow V_3$ is defined as $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_3 + e_1$, then solve the operator equation $T(x_1, x_2, x_3) = (6, 8, 4)$. 7

2. (A) State and prove and dual basis existence theorem. (B) Find the dual basis of the basis B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for the vector space V₃.

3. (A) Prove that any orthogonal set of non-zero vectors is linearly independent. 7

(B) If for $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ the map $\langle \rangle$ is defined as $\langle x, y \rangle = x_1[y_1 - y_2] + x_2[2y_2 - y_1]$ then show that $\langle \rangle$ is an inner product on \mathbb{R}^2 .

- 4. (A) Define an orthogonal linear map. If (V, <, >) is an inner product space then prove that a linear map $T : V \to V$ is an orthogonal linear map **if and only if** ||T(x)|| = ||x|| for all $x \in V$.
 - (B) Apply the Gram-Schmidt orthogonalization process to the basis $B = \{(0, -1, 1), (1, 0, -1), (1, 1, 0)\} \text{ in order to get orthonormal basis for V}_3. 7$ 22 1 P.T.O.

JG-122

5. (A) If det : $V^n \to R$ is a function satisfying the properties of the determinant then prove the followings :

(i)
$$\det(v_1, v_2, \dots, v_j, \dots, v_n) = \det(v_1, v_2, \dots, v_i + 3v_j, \dots, v_j, \dots, v_n)$$

(ii) $\det(v_1, v_2, v_3, v_4, \dots, v_n) = -\det(v_1, v_3, v_2, v_4, \dots, v_n).$
 $(x + a b c d)$

7

7

(B) If A =
$$\begin{pmatrix} a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{pmatrix}$$
 then compute detA without expansion. 7

6. (A) State and prove the Cramer's rule for solving a system of linear equations. 7

(B) Apply the laplace Expansion about the last row to find detA for the matrix.
$$7$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 4 & 5 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & -1 & 3 \end{pmatrix}$$

- (A) Express the characteristic equation of 2 × 2 matrix A in terms of Trace of A and det A. Also prove that a 2 × 2 real and symmetric matrix has only real eigen values.
 - (B) Diagonalize the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Also find the modal matrix which diagonalizes A. 7
- 8. (A) If T:V → V is a symmetric linear map and if v_i are eigen vectors of T corresponding to eigen values λ_i, i = 1, 2 with λ₁ ≠ λ₂ then prove that v₁ and v₂ are orthogonal vectors.

(B) Identify the quadric in R³ given by
$$f(x, y, z) \equiv 4xz + 4y^2 + 8y + 8 = 0.$$
 7

- 9. Answer any **four** of the followings in short :
 - (A) Define the terms :
 - (i) The space L(U, V)
 - (ii) A Bilinear form
 - (B) Define the terms :
 - (i) Homogeneous operator equation
 - (ii) Annihilator of a non-empty subset A of a vector space V.
 - (C) State the Cauchy-Schwarz inequality and the triangle inequality.
 - (D) Define the terms :
 - (i) An orthogonal set
 - (ii) An orthonormal set

(E) Find the matrix A if
$$A^{-1} = \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}$$
.

(F) Find detA without expansion of the determinant if $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 3 \end{bmatrix}$.