Seat No. :	

AI-105

April-2022

B.C.A., Sem.-VI

CC-309: Introduction to AI & Machine Learning

Time	e: 2 H	Iours	l				[Max. Marks:	50
Instructions		ns:	(1) (2) (3)	All Questions in Attempt any Tv Question-5 in S	wo questions in	Sec	etion-I.	
					Section-I			
1.	(A)	Expl	ain vai	rious application	areas of Artifi	cial	Intelligence.	10
	(B)	List	out fou	ır basic kinds of	agent program	s and	d explain any two in detail.	10
2.	(A)	Disc	uss the	concept of DFS	S and depth-lim	ited	search in detail.	10
	(B)	Expl	ain the	working of A*	search for min	imiz	ing the total estimated solution cost.	10
3.	(A)			e concept of in	formation extr	actic	on using Finite state automata and	10
	(B)	Write	e a sho	ort note on Text	classification.			10
4.	(A)	Write	e a sho	ort note on types	of machine lea	rnin	g.	10
	(B)	List	and ex	plain any ten app	plication areas	of m	nachine learning in real world.	10
Section-II								
5.	Choo	ose the	e corre	ect option: (Any	Five)			10
	(1)	Athere		_ agent is one certainty.	that acts so as	to a	achieve the best outcome or, when	
		(a)	Ratio	onal	((b)	Cognitive	
		(c)	Both	(a) and (b)	((d)	None of these	

(2)	is an example of Acutator.									
	(a)	Road	(b)	Steering						
	(c)	Cameras	(d)	Safe						
(3)	All a	All agents can improve their performance by								
	(a)	Tracing	(b)	Tracking						
	(c)	Learning	(d)	None of these						
(4)	search algorithms can do quite well when given some guidance where to look for solutions.									
	(a)	Informed	(b)	Planning						
	(c)	Both (a) and (b)	(d)	None of these						
(5)	cost typically depends on the time complexity but can also include term for memory usage.									
	(a)	Optimal	(b)	Search						
	(c)	Time	(d)	None of these						
(6)	Unsu	apervised learning is drive	en.							
	(a)	Task	(b)	Data						
	(c)	Environment	(d)	Agent						
(7)	tries to expand the node that is closest to the goal on the grounds that is likely to lead to a solution quickly.									
	(a)	Greedy BFS	(b)	Greedy DFS						
	(c)	Both (a) and (b)	(d)	None of these						
(8)	Machine Learning is a subset of									
	(a)	AI	(b)	Deep Learning						
	(c)	Neutral Networks	(d)	None of these						
(9)	9) HITS stands for									
	(a)	Hyperlink Induced Topic Search	(b)	Hyperlink Included Task Search						
	(c)	Hyper-loop Infused Topic Search	(d)	None of these						
(10)	problem uses samples from the domain to assign a label or group t new unknown samples.									
	(a)	Classification	(b)	Regression						
	(c)	Optimization	(d)	All of these						

AI-105 2