2203N269

Candidate's	Seat No	:_
	~ e	•

M.Sc. Sem.-1 Examination 402

Physics March 2022

Max.	Marks	:	50

Time: 2-00 Hours]

Instructions: All questions in **Section – I** carry equal marks. Attempt any **Three** questions in **Section – I**. Questions in **Section – II** is **COMPULSORY**.

Section - I

Q-I	A.	When is Hamilton-Jacobi theory more valuable? Explain the harmonic 7	
		oscillator problem using Hamilton-Jacobi method.	
	B.	Describe how the problem of motion of a body in a central force field is	7
		divisible in polar coordinates but not in cartesian coordinates.	

Q-II	A.	What are the action-angle variables? Describe how they can be used to	7
		get the frequencies of periodic motion. Also, find the frequency of linear	
		harmonic oscillator.	
	B.	Prove that the Poisson brackets of two constants of motion is itself a	7
		constant of motion even when the constants depend upon time clearly.	

Q-III	A.	Get values of eigen frequencies of oscillations and their related eigen 7	
		vectors for the system of three molecules.	
	B.	Express normal coordinates. What do you mean by stable, unstable and	7
		neutral equilibrium? Write example of each.	

Q-IV	A.	What is orthogonality? Show that the Eigen vectors corresponding to the 7	
		two distinct Eigen frequencies are orthogonal.	
	B. If vibrating string of length L is fixed at both the ends, find Lagrangian		7
		equation of motion. Describe how frequencies of different mode of	
		oscillations can be obtained.	

Q-V	A.	Define Brownian motion. Explain Einstein theory of Brownian motion.	
	B.	State the origin of Shot noise. Obtain an expression for RMS shot noise	7
		current.	

Q-VI	A.	Derive Langevin theory of Brownian motion. State its physical	
		significance.	
	B.	Define Johnson noise. State and prove Nyquist theorem.	7

N269-2

Q-VII		Giving examples, explain 2 nd order phase transitions.	7
-	B.	Discuss Bragg-William's approximation for magnetic phase transition.	7
	1		
O TITT		Dicc	7
Q-VIII	A.	Differentiate between 1 st and 2 nd order phase transition. Show that during	7
Q-VIII	A.	Differentiate between 1 st and 2 nd order phase transition. Show that during the 1 st order phase transition the latent heat is non-zero. Explain critical exponents. Give its physical significance.	7

Section - II

Q-IX	MC	Qs		8
1.	The	contact transformation is		
	A.	the transformations of older to new coordinates.	В.	the coordinates remain the same.
	C.	the transformations of newer to older coordinates.	D.	the coordinates are not transformed.
2.	H(c	Hamiltonian of a system with $q_1,, q_n, p_1,, p_n, t$) with an explowing is correct?	n de	grees of freedom is given by $H = \frac{1}{2}$ dependence on time t . Which of the
	A.	The equations of motions are not valid since <i>H</i> has explicit dependence on time.	B.	Different phase trajectories canno intersect each other.
	C.	H always represents the total energy of the system and is a constant of motion.	D.	Any initial volume in phase space remains unchanged is in magnitude under time.
3.	1	ro bodies of mass m and 2m are couthe normal mode is	ıpled	by a spring constant k. The frequency
	A.	$\sqrt{\frac{3k}{2m}}$	B.	$\sqrt{\frac{2k}{3m}}$
	C.	$\sqrt{\frac{k}{m}}$	D.	$\sqrt{\frac{k}{2m}}$
4.	In	case of two coupled identical pendu	lums.	oscillating in a plane
	A.			each pendulum always doesn execute simple harmonic motion.
		the general motion can be	D.	the general motion can be expresse

		expressed as a superposition of		as a superposition of two simple
		two simple harmonic motions of		harmonic motions of the different
		the same frequency.		frequency.
5.	If th	ne measured time of particle motion.	t > >	τ_e then, one expects
	A.	Steady state motion of particles	B.	Brownian motion of particles
	C.	Either the Brownian motion or	D.	Combined steady state and
		steady state motion		Brownian motion
6.		17 °C, the noise voltage generated b	oy 5 l	$k\Omega$ resistor, operating over a
	ban	dwidth of 20 kHz is		
	A.	1.28 pV	В.	1.28 nV
	C.	1.28 μV	D.	1.28 mV
7.	In v	which of the following phase transiti	on, t	here is no latent heat involved
44.0	A.	Liquid metal condenses in to solid metal	B.	Boling water converted into vapour
	C.	Paramagnetic iron converted to ferromagnet	D.	It depends on material
8.	Wh	nich one of the following is an exam	ple o	f first order phase transition
	A.	Crystal structure of BaTiO3	B.	Ice melts into water
	C.	Superconducting phase transition	D.	Paramagnet to ferromagnet