1005E145

Candidate's Seat No:

MSc Sem.-3 Examination 501

Time: 2-00 Hours]

Mathematics May 2022

[Max. Marks: 50

Instructions:

- Each question in Section-I carry equal 14 marks.
- 2. Attempt any Three questions in Section-I.
- 3. Questions in Section-II are COMPULSORY.

Section-I

- (A) Prove that Rⁿ is a vector space over R. What is the dimension of Rⁿ over R?
 - (B) Let N be a normed linear space. Prove the following:

7

- (i) For $x, y \in N$, $||x|| ||y|| \le ||x y||$.
- (ii) the norm is a continuous function.
- (A) Is the set A = {(x₁, x₂, x₃)/x₁ + x₂ + x₃ = 1 } a subspace of the real linear space R³? Justify your answer.
 - (B) State (carefully) Zorn's lemma. Define each term used in the statement of this lemma.
- (A) When we say that a linear map T: N → N' is continuous (bounded)? Give an illustration.
 - (B) Give an example of a discontinuous linear transformation. 7
- (A) State and prove Hahn-Banach theorem.

7

(B) If $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$, prove that $(l_p^n)^* = l_q^n$.

7

- 5. (A) Let N be a non-zero normed linear space. If N is a Banach space, prove that $\{x: ||x|| = 1\}$ is complete.
 - (B) For any non-empty subset S of a Hilbert space H, prove that S[⊥] is always a closed subspace of H.
- (a) If M is a closed linear subspace of a normed linear space N and x₀ is a vector not in M, prove that there exists a functional f₀ in N* such that f₀(M) = 0 and f₀(x₀) ≠ 0.

E-145-2

(b) State and prove Schwartz inequality. (A) Let L be a non-zero finite-dimensional linear space of dimension n and W be a linear subspace of L of dimesnsion m, show that L/W is a linear space. What is the dimension of L/W? (B) Give an example of a normed linear space which is not complete. Justify your answer. 8. (A) Sketch the following sets: (i) $S = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : ||x||_2 \le 1\}.$ (ii) $S = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x||_{\infty} = 1\}.$ (iii) $S = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x||_1 = 1\}.$ (B) State the following theorems.(Do not prove) (i) The closed graph theorem (ii) Open mapping theorem.

Section-II

7

(1) If M is a two-dimensional subspace of the real space \mathbb{R}^3 , then

(iii) Uniform boundedness theorem.

- (A) M is a line through the origin.
- (B) M is a plane through the origin.
- (C) $M = \{0\}.$
- (D) M is the entire space R³.
- (2) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be that linear transformation such that T(1,1) = (1,-2) and T(1,0) = (-4,1), then T(5,-3) equals
 - (A) (-35, 14) (B) (-35.6) (C) (14, -35) (D) (35, 3)

(3	Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a	linear manning	defined by T(z, a, z)	(- 2 0 - 1
8.75	then T is	micar mapping	defined by $I(x, y, z)$	= (x - 3y - 2z, y - 4z, 0)
	(A) one-one		(C) invertible	
	(B) onto		(D) none of the	above
(4)	The inequality $\sum_{i=1}^{n} x_i y_i \le x _p y _q$ is called			
	(A) Cauchy's inequalit		(C) Minkowski's	s inequality.
	(B) Hölder's inequality	7.	(D) None of the	se.
(5)	If $T:N\to N'$ is linear and N is finite dimensional then			
	(A) T is continuous			
	(B) $T = 0$			
	(C) Both N and N' ar	e finite dimension	nal.	
	(D) None of these			
(6)	Which of the following	subspaces of nor	med linear space l_{∞} is	s not closed?
	(A) c (B) c ₀	(C) c ₀₀	(D) None of these
(7)	For $x \in X$, the norm in the inner product space X is			
	(A) $ x = \langle x, x \rangle$			
	(B) $ x = \sqrt{\langle x, x \rangle}$			
	(C) $ x = \langle x, x \rangle^2$			
	(D) none of the above.			
(8)	If N is a finite-dimensional conjugate space N^* of N		ar space of dimension	n, then the dimension of
	(A) equal to n			
	(A) equal to n(B) less than n			
	1041034 - 51			

3