0701M258

Candidate's	Seat	No	•
Cultulate b	Deac	1,0	*

B.Sc Sem.-3 Examination

CC 202

Electronics

Time: 2-00 Hours] January 2021 [Max. Marks: 50

SECTION - I

Q.I	(A) (B)	Explain Transformation of impedances with tapped resonant circuits. Explain ideal transformer with mesh impedances, ratio of currents and voltage.	
Q.II	(A) (B)	Discuss reactance L-section for impedance transformation. Derive its equation for $R \le R_g$. Explain magnetically coupled circuit. Derive its coefficient of coupling.	
Q.III	(A) (B)	Explain how a low pass RC circuit behaves as an integrator. Derive the equation of characteristic impedance of symmetrical networks.	
Q.IV	(A) (B)	Explain how a high pass RC circuit behaves as differentiator. Derive the relation between neper and decibel.	
Q.V	(A) (B)	Draw full adder and explain it with the help of Truth table and karnaugh map. Explain how 555 timer can be used as monostable multivibrator.	
Q.VI	(A) (B)	Draw & explain binary adder-subtracter with the help of example. Discuss the Schmitt trigger operation of the 555 timer.	,
Q.VII	(A) (B)	Explain Machine language, assembly language & high-level language. Explain 8085 hardware and programming model in detail.	
Q.VIII	(A) (B)	Explain large computers, medium-size computers & microcomputers. Write instructions to load the 43H & 03H in register A & B respectively. Add the numbers, and display the sum at the LED output port PORT 1.	
		SECTION – II	
Q.IX	Atter (A) (B) (C) (D) (E) (F) (G) (H) (J) (K) (L) (M) (N) (O) (P)	Ideal transformer is assumed to have value of k = The value of anti-resonant resistance is dependent on the ratio chosen for the circuit. For values of k/kc greater than, the circuit is over-coupled. Coefficient of coupling k = For better differentiation CR should be as as possible. The bel is defined as the of a power ratio. 10 neper = db. The loudness L may be expressed as L = In half adder, if A=1 and B=1 then SUM = In full adder, output of XOR gate is called The output of the AND gate in half adder circuit is called Pin number 5 of 555 timer is called A set of instructions written for the microprocessor to perform a task is called a Programming languages that are intended to be machine-independent are called The Sign flag is set if bit D7 of the result is	