1905E715

Candidate's Seat No:

M.Sc. (Sem.-III) Examination 503 Statistics

Time: 3 Hours

May-2017

[Max. Marks: 70

STA503 (Multivariate Analysis)

Instructions: 1. All questions carry equal marks.

2. Scientific calculator can be used.

Q-1(a) Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$ and let \underline{x} , $\underline{\mu}$ and Σ be partition as follows.

$$\underline{x} = \begin{bmatrix} \underline{x}_1 \\ \underline{x}_2 \end{bmatrix}_S^r, \ \underline{\mu} = \begin{bmatrix} \underline{\mu}_1 \\ \underline{\mu}_2 \end{bmatrix}_S^r \quad \text{and} \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix}_S^r, \ r + s = p.$$

- (i) Show that $\underline{x}_1 \Sigma_{11} \Sigma_{22} \underline{x}_2$ and \underline{x}_2 are independently distributed.
- (ii) Obtain the conditional distribution of $(x_1/X_2 = x_2)$.

OB

(a) Let \underline{x}_r , r=1,2,...k, be independently distributed as $N_p(\underline{\mu}_r, \Sigma_r)$. Then for fixed matrices $A_r:m \times p$, obtain the distribution of $\sum_{r=1}^k A_r \underline{x}_r$. If $\underline{\mu}_r = \underline{\mu}$ and $\Sigma_r = \Sigma$; r=1,2,...,k,

then obtain the distribution of \bar{x} .

(b) Define partial Correlation coefficient. In usual notation obtain the expression in terms of elements of $\sum^{-1} = (\sigma^{ij})$ for partial correlation coefficient. Hence obtain $r_{i2,3}$.

OF

(b)Define canonical correlation coefficients and canonical variates. In usual notation show that the canonical correlation are solution of the determinant equation

$$\begin{vmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & -\lambda \Sigma_{22} \end{vmatrix} = 0 \ .$$

Show that multiple correlation is a special cases of canonical correlation.

Q-2 (a) let \underline{x}_1 , \underline{x}_2 ,....., \underline{x}_n be n independent observation from $N_p(\underline{\mu}, \Sigma)$ (n>p)

Population. Show that the sample mean $\frac{\overline{x}}{\underline{x}}$ and $S = \sum_{i=1}^{n} (\underline{x}_i - \overline{\underline{x}}) \cdot (\underline{x}_i - \overline{\underline{x}})'$ are Independently distributed.

OR

(a) Define Wishart matrix. Obtain probability density function of Wishart matrix V:pxp when $n \ge p$, $\underline{\mu} = 0$ and $\Sigma = I_p$.

P. T. O.

E715-2

(b) Define Hotelling's T^2 statistic. Show that it is used to test the $H_0: \underline{\mu} = \underline{\mu}_0$ against $H_1: \underline{\mu} \neq \underline{\mu}_0$ when $\underline{x} \sim N_p(\mu, \Sigma)$. Obtain the distribution of T^2 under H_0 . What is the power of the test?

OR

- (b) Show that Hotelling's T^2 can be used to test $H_0 = \rho_{1,23,...,p} = 0$ against $H_1 = \rho_{1,23,...,p} \neq 0$, where $\rho_{1,23,...,p}$ is multiple correlation coefficient.
- Q-3(a) Obtain the estimated minimum ECM rule for classifying an object \underline{x}_0 when $\Sigma_1 = \Sigma_2$. Obtain probabilities of errors of misclassification for the classification rule you have obtained.

OR

- (a) Define sample Mahalanobis distance D^2 , obtain the relation between D^2 and Hotelling's T^2 . Hence, obtain the distribution of D^2 .
- (b) Explain orthogonal factor model with K common factors. Give principal component solution of the factor model.

OR

- (b) Obtain null distribution of sample correlation coefficient matrix $R=(r_{ij})$.
- Q-4 (a) Explain the technique of One Way MANOVA for the comparison of several multivariate population means.

OR

- (a)Define principal components. Write its important applications. If $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ where $\rho > 0$, then find the principal components associated with matrix Σ and find the percentage of total variance explained by first principal component.
- (b) Obtain null distribution of the sample correlation coefficient r. Write E(r) and Var(r).

 OR
- (b)Obtain MLE of $\underline{\beta}$ and σ^2 in GLM. How do you test H: $\underline{c}, \underline{\beta} = \underline{c}, \underline{\beta}_0$ for a specified real vector \underline{c} ?
- Q-5 Choose the appropriate answer.
 - 1. If $X = \begin{bmatrix} 2 & 8 & 6 & 8 \\ 12 & 9 & 9 & 10 \end{bmatrix}$ is an observation matrix of order 2x4 then its mean vector is

 (A) (6,10) (B)(24,40)

 (C) (14,17,15,18) (D) (14,17,15,18)/2
 - 2. If x:2x1 is distributed as $N_2(\underline{\mu}, \Sigma)$ with $\mu' = (1, 5)$ and $\Sigma = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$, then the distribution of c'x, where C'=(1,-1) is

(A)
$$N(-4,2)$$

(B) $N_{\gamma}(\mu, \Sigma)$

(C)
$$N(4,-2)$$

(D) N(-4,3)

3. Let x_1, x_2 and x_3 be distributed as $N_2(\underline{\mu}, \Sigma)$ with $\mu' = (0,0)$ and $\Sigma = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Then

$$E(x_1x_1 + x_2x_2 + x_3x_3)$$
 is

(c)
$$\Sigma = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$

(D)
$$\Sigma = \begin{bmatrix} 3 & 6 \\ 6 & 15 \end{bmatrix}$$

4. In usual notations the formula for partial correlation coefficient r_{123} is

(A)
$$\frac{\sigma^{12}}{\sqrt{\sigma^{11}\sigma^{22}}}$$

 $(B)\frac{-\sigma^{12}}{\sqrt{\sigma^{11}\sigma^{22}}}$

(C)
$$\frac{-\sigma^{12}}{\sigma^{11}\sigma^{22}}$$

(D)
$$\frac{\sigma^{12}}{\sigma^{11}\sigma^{22}}$$

5. Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$ and consider the partition of $\underline{x}, \underline{\mu}$ and Σ as follows.

$$\underline{x} = \begin{pmatrix} \underline{x}_1 \\ \underline{x}_2 \end{pmatrix}$$
, $\underline{\mu} = \begin{pmatrix} \underline{\mu}_1 \\ \underline{\mu}_2 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$; where $\Sigma_{11} : rxr$ and $\Sigma_{22} : sxs$ are matrices

with r+s=p. The conditional distribution of \underline{x}_1 given $\underline{X}_2 = \underline{x}_2$ is

(A)
$$N_p(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\underline{x}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12})$$

(B)
$$N_r(\underline{\mu}_1 - \Sigma_{12}\Sigma_{22}^{-1}(\underline{x}_2 - \underline{\mu}_2), \ \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^{'})$$

(C)
$$N_{p}(\underline{\mu}_{2} + \Sigma_{12}^{'}\Sigma_{11}^{-1}(\underline{x}_{1} - \underline{\mu}_{1}), \ \Sigma_{22} - \Sigma_{12}^{'}\Sigma_{11}^{-1}\Sigma_{12})$$

(D)
$$N_s(\mu_2 - \Sigma_{12}^{'}\Sigma_{11}^{-1}(\underline{x}_1 - \mu_1), \Sigma_{22} - \Sigma_{12}^{'}\Sigma_{11}^{-1}\Sigma_{12})$$

6. If \underline{x}_1 and \underline{x}_2 are independent $N_p(\underline{\theta}_i, \Sigma_i)$; i=1,2 respectively, then the distribution of $(\underline{x}_1 - \underline{x}_2)$ is

$$(A)N_{p}(\underline{\theta}_{1}-\underline{\theta}_{2},\Sigma_{1}-\Sigma_{2})$$

$$(B)N_p(\underline{\theta}_1 - \underline{\theta}_2, \Sigma_1 + \Sigma_2)$$

$$(C)N_p(\underline{\theta}_1 + \underline{\theta}_2, \Sigma_1 + \Sigma_2)$$

$$(D)N_{p}(\underline{\theta}_{1}+\underline{\theta}_{2},\Sigma_{1}-\Sigma_{2})$$

Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$, where Σ is a nonsingular matrix. The characteristic function of the vector $y = C\underline{x}$ is given by

(A)
$$\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}\underline{C}\theta - \frac{1}{2}\underline{t}\underline{C}\Sigma\underline{C}'\underline{t}\right)$$
 (B) $\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}\underline{C}\underline{\mu} - \frac{1}{2}\underline{t}\underline{C}\Sigma\underline{C}'\underline{t}\right)$

(B)
$$\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}C\underline{\mu} - \frac{1}{2}\underline{t}C\Sigma C'\underline{t}\right)$$

(C)
$$\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}C\underline{\mu} + \frac{1}{2}\underline{t}C\Sigma C'\underline{t}\right)$$

(C)
$$\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}C\underline{\mu} + \frac{1}{2}\underline{t}C\Sigma C'\underline{t}\right)$$
 (D) $\phi_{\underline{y}}(\underline{t}) = \exp\left(i\underline{t}C\underline{\theta} + \frac{1}{2}\underline{t}C\Sigma C'\underline{t}\right)$

8. The unbiased estimate of the variance covariance matrix for multivariate normal distribution is P. T. 0

E715-4

$$(A)\sum_{i=1}^{n}\left(\underline{x}_{i}-\overline{\underline{x}}\right)\left(\underline{x}_{i}-\overline{\underline{x}}\right)$$

$$(B)\sum_{i=1}^{n} \left(\underline{x}_{i} - \overline{\underline{x}}\right) \left(\underline{x}_{i} - \overline{\underline{x}}\right) / n$$

$$(C)\sum_{i=1}^{n}\left(\underline{x}_{i}-\overline{\underline{x}}\right)\left(\underline{x}_{i}-\overline{\underline{x}}\right)^{2}/(n-1) \qquad (D)\sum_{i=1}^{n}\left(\underline{x}_{i}-\overline{\underline{x}}\right)^{2}\left(\underline{x}_{i}-\overline{\underline{x}}\right)/n$$

$$(D)\sum_{i=1}^{n} \left(\underline{x}_{i} - \overline{\underline{x}}\right) \left(\underline{x}_{i} - \overline{\underline{x}}\right) / n$$

9. If the joint pdf of (x, y) is $\frac{1}{2.4\pi} \exp \left[-\left\{ \frac{(x^2/4) - (1.6xy/2) + y^2}{0.72} \right\} \right]$ then the values of

 $\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}$ and ρ_{xy} are respectively

(A) (0,0,2,1,0.8)

(B) (0, 0, 2, 1, 0.6)

(C)(1/2, 1, 2, 1, 0.4)

(D) (0, 0, 1, 2, 0.8)

The Hotelling's T^2 is a generalization of 10.

- (A) Chi-square distribution
- (B) t-distribution
- (C) Square of t-distribution
- (D) F-distribution

11. Let $X_1, X_2, ..., X_{20}$ be a random sample of size n=20 from a $N_6(\mu, \Sigma)$ population. If

$$B = \begin{bmatrix} 1,0,0,0,0,0 \\ 0,0,1,0,0,0 \end{bmatrix}$$
, then the distribution of B* = B(19S)B' is

- (A) Chi-square distribution with degrees of freedom 6.
- (B) Non-central Chi-square distribution with degrees of freedom 6
- (C) $W_2(B^*, 19, B\Sigma B')$
- (D) $W_6(B^*, 19, B\Sigma B')$

Let $\underline{X}_1, \underline{X}_2, ..., \underline{X}_{25}$ be a random sample of size n = 50 from a $N_6(\underline{\mu}, \Sigma)$ population. Then the distribution of $(\underline{x}_1 - \underline{\mu})^T \Sigma^{-1} (\underline{x}_1 - \mu)$ is

- (A) Chi-square with '50' degrees of freedom
- (B) Non central Chi-square with '50' degrees of freedom
- (C) Chi-square with '6' degrees of freedom
- (D) Non central Chi-square with '6' degrees of freedom

13. If the sample mean vector x and variance covariance matrix S of three iid observations

from a bivariate normal distribution are $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$ respectively then the value of

observed T² for testing $H_0: \mu = \mu_0 = \begin{pmatrix} 9 \\ 5 \end{pmatrix}$ is

- (A) 7/9 (B) 9/7
- (C) 7/27

14. let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$, $\Sigma > 0$. Then the distribution of $(\underline{x} - \underline{\mu})(\underline{x} - \underline{\mu})$ is

- $(A)\chi_p^2(\mu'\Sigma^{-1}\mu)$
- (B) $W_{p}(1,\Sigma)$

(C) $W_n(n, \Sigma)$

(D) χ_n^2