Candidate's Seat No:

M.Sc. (Sem.-III) Examination 501 Mathematics May-2017

Time: 3 Hours] May-2017 [Max. Marks: 70]

1. (a) Attempt any ONE.

7

- (i) If E is a linear transformation on a linear space L, then prove that E is idempotent \Leftrightarrow there exist subspaces M and N of L such that $L = M \bigoplus N$ and E is the projection on M along N.
- (ii) Let L be a non-zero linear space. If $B_1 = \{e_i\}$ and $B_2 = \{f_j\}$ be two bases for L, then prove that B_1 and B_2 have the same number of elements (that is, the same cardinal number).
- (b) Attempt any Two.

4

- (i) Let T be a linear transformation on a linear space L. Prove that T is non-singular ⇔ T(B) is a basis for L whenever B is.
- (ii) Show that the set $\{1, x, x^2, x^3...\}$ is a linearly independent subset of C[0, 1]
- (iii) If $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 , then is it true that $\{e_1 + e_2, e_2 + e_3, e_3 + e_1\}$ is also a basis? Justify.
- (c) Answer very briefly.

3

- (i) Give two linear spaces over \mathbb{R} of dimension 5.
- (ii) Give examples of three proper subspaces of \mathbb{R}^3 .
- (iii) Let L be a non-zero finite dimensional linear space of dimension n. Show that every set of n+1 vectors in L is linearly dependent.
- 2. (a) Attempt any ONE.

7

- (i) If M is a closed linear subspace a normed linear space N then show that the quotient N/M is also a normed linear space.
- (ii) If T is a linear transformation from a normed linear space X to a normed linear space Y then prove that T is continuous \Leftrightarrow T is continuous at $0 \Leftrightarrow$ there exist a real number $K \geq 0$ such that $||T(x)|| \leq K||x||$ for all x.

(P.T.O)

(b) Attempt any TWO.
(i) Give an example of a discontinuous linear transfromation.
(ii) If T is a linear transformation from a finite dimensional normed linear
space X to any normed linear space Y then prove that T is continuous.
(iii) Define the equivalence of two norms . and . '. Give an illustration.
(c) Answer very briefly.
(i) If T is a continuous (bounded) linear transformation then prove that T
is uniformly continuous.
(ii) Is the map T: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = (y,x)$ linear? continuous?
Justify.
(iii) Define isometric isomorphism.
3. (a) Attempt any ONE.
(i) State and prove Hahn- Banach theorem.
(ii) Show that a normed linear space N can be regarded as a part of N^{**}
without altering any of its structure as a normed linear space.
(b) Attempt any TWO.
(i) Define the conjugate space of a normed linear sapce. If N is finite dimen-
sional then show that its conjugate space N^* is also finite dimensional.
(ii) If y is a non-zero vector in a normed linear space N then show that there
is functional f on N such that $f(y) = y $ and $ f = 1$.
(iii) Give an example of a functional on $C[0,1]$.
(c) Answer very briefly.
(i) Define reflexive normed linear space. Give an illustration.
(ii) Give the conjugate space of normed linear spaces c_0 and l_1 .
(iii) Is it true that the conjugate space of any normed linear space is complete? why?
4. (a) Attempt any ONE.
(i) State and prove Open mapping theorem,
(ii) State and prove Closed graph theorem.

- E 649-3 (b) Attempt any TWO. 4 (i) If P is a projection on a Banach space B then show that its range and the null space are closed linear subspaces of B. (ii) Prove that a non-empty subset A of a normed linear space N is bounded . \Leftrightarrow f(A) is a bounded set of numbers for each f in N^* . (iii) If T is an operator on a Banach space B, show that T has an inverse \Leftrightarrow T^* has an inverse. (c) Answer very briefly. 3 (i) Give an example of a projection on \mathbb{R}^3 . Give its range and the null space. (ii) True or False: The map T(x,y,z)=(x-1, y, z) on \mathbb{R}^3 is a projection (iii) Show that $(ST)^* = T^*S^*$. 5. (a) Attempt any ONE. 7 (i) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm. (ii) State and prove Schwarz' inquality. Using this prove that the inner product is jointly continuous. (b) Attempt any TWO. 4 (i) Give an example of an inner product space that is not a Hilbert space. (ii) Define the orthogonal complement S^{\perp} of a subset S of Hilbert space H Show that S^{\perp} is a closed linear subspace of H. (iii) If $A = \{x_1, x_2, ..., x_n\}$ is a set of non-zero orthogonal vectors in H then prove that A is linearly independent.
 - (c) Answer very briefly.

- (i) State and prove parallelogram law.
- (ii) Define orthonormal basis in Hilbert space.
- (iii) True or False: Every Hilbert space is reflexive.

1905E714

Candidate's Seat No:

M.Sc. (Sem.-III) Examination 503 EA Mathematics May-2017

Time: 3 Hours

Max. Marks: 70

Q.1 (a) Attempt any one.

7

- (i) Prove that there is an infinite number of primes.
- (ii) Find integers x, y, z such that 35x + 55y + 77z = 1.
- (b) Attempt any two.

4

- (i) If p is a prime number and p/ab, prove that p/a or p/b.
- (ii) Prove that Fermat numbers are all relatively prime to each other.
- (iii) Prove that the sum of the squares of two odd integers cannot be a perfect square.
- (c) Answer very briefly.

3

- (i) State fundamental theorem of arithmetic.
- (ii) Show that any integer of the form 6n + 5 is also of the form 3k + 2. but not conversely.
- (iii) Find all pairs of primes p and q satisfying p q = 3.
- Q.2 (a) Attempt any one.

7

- (i) Prove that every even perfect number is of the form $2^{k-1}(2^k-1)$, where 2^k-1 (k>1) is a prime.
- (ii) State and prove the Möbius inversion formula.
- (b) Attempt any two.

- (i) Prove that $[x] + [y] \le [x + y]$, where x and y are real numbers.
- (ii) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.
- (iii) If the integer n>1 has the prime factorization $n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$, prove that

$$\sum_{d|n} \mu(d)\phi(d) = (2-p_1)(2-p_2)\dots(2-p_r).$$

E714-2

	(c)	Answer very briefly.		
		(i)	Find the highest power of 5 dividing 5000!.	
		(ii)	Calculate $\phi(2017)$.	
		(iii)	Calculate $\sigma(957)$.	
Q.3	(a)	Atte	mpt any one.	7
		(i)	Using the theory of indices, solve $4x^9 \equiv 7 \pmod{13}$.	
		(ii)	State and prove Wilson's theorem.	
	(b)	Atte	mpt any two.	4
		(i)	Solve: $x \equiv 5 \pmod{6}$, $x \equiv 4 \pmod{11}$, $x \equiv 3 \pmod{17}$.	
		(ii)	Solve: $5x \equiv 2 \pmod{26}$.	
		(iii)	Show that 17 divides $11^{104} + 1$.	
	(c)	Ansv	wer very briefly.	3
		(i)	Find all primitive roots of 15.	
		(ii)	What is the order of the integer 5 modulo 23?	
		(iii)	State Euler's theorem.	
Q.4	(a)	Atte	empt any one.	7
		(i)	Determine the general solution of $172x + 20y = 1000$ by means of simple continued fractions.	ole
		(ii)	Find the infinite continued fraction representation of $\frac{1+\sqrt{13}}{2}$.	
	(b)	Atte	empt any two.	4
		(i)	Evaluate $[0; \overline{1,2,3}]$.	
		(ii)	Evaluate $[2; \overline{1,1,1,4}]$	
		(iii)	Obtain all primitive Pythagorean triples of the form $60, y, z$.	
	(c)	Ans	wer very briefly.	3
		(i)	If x, y, z is a primitive Pythagorean triple, prove that exactly one of t	he
			integers x or y is divisible by 3.	
		(ii)	Express $\frac{51}{19}$ as finite simple continued fraction.	
		(iii)	What is the fundamental solution of $x^2 - 18y^2 = 1$?	

Q.5 (a) Attempt any one.

- (i) Determine all algebraic integers of the field $\mathbb{Q}(\sqrt{m})$ where m is a square-free rational integer, positive or negative but not equal to 1.
- (ii) Show that the field $\mathbb{Q}(\sqrt{-3})$ is Euclidean.
- (b) Attempt any two.

4

7

- (i) Prove that if γ is an integer in $\mathbb{Q}(\sqrt{m})$, then $N(\gamma) = \pm 1$ if and only if γ is a unit.
- (ii) Find the minimal polynomial of $1 + \sqrt{2} + \sqrt{3}$.
- (iii) If α is any algebraic number, prove that there is a rational integer b such that ba is an algebraic integer.
- (c) Answer very briefly.

- (i) Prove that reciprocal of a unit is a unit.
- (ii) Prove that $N(\alpha) = 0$ if and only if $\alpha = 0$.
- (iii) Give an example of prime in $\mathbb{Q}(i)$.

1805E673

Candidate's Seat No ______

M.Sc. (Sem.-III) Examination 502 Mathematics May-2017

Time: 3 Hours

[Max. Marks: 70

[4]

[7] 1 (A). Define a prime ideal of a commutative ring R with unity. Define a maximal ideal of a commutative ring R with unity. Let R be a commutative ring with unity and let A be an ideal of R. Show that R/A is an integral domain if and only if A is a prime ideal.

[7]I(A) Define a ring homomorphism from a ring R to a ring 5. Define the kernel of a ring homomorphism. Suppose #: R -> s is a homomosphism. Show that Kerp is an ideal of R.

1 (B). Answer any two.

suppose D is an integral domain. Show that DEXI is an integral domain.

Let 2x+1 and x2+2 be polynomials (ii)in Zs [X]. Find the remainder upon dividing x^2+2 by 2x+1.

Find a polynomial with integer coefficients which has \frac{1}{5} and \frac{1}{3} as zeros. (iii) [3]

1(c). Answer all.

(i) Let $f(x) = (x-2)^2(x-1)(x^2-1)$ be a polynomial in IREXI. Then I is a zero of multiplicity k.

(ii) give an example (without proof) of a prime ideal in Z.

- $I(\mathcal{C})(iii)$ Let $x^2+1 \in \mathbb{Z}_5 \subset x \supset X$. Find all the zeros of x^2+1 in \mathbb{Z}_5 .
- 2(A). State Eisenstein's criterion,

 Let β be a prime number.

 Show that the polynomial $\Phi(x) = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible over \mathbb{Q} .

OR

- 2(A). Construct a field with nine elements. [7]
- 2(B). Answer any two. (i) Let $f(x) = x^3 + 6 \in \mathbb{Z}_7 [x]$. Write f(x) as a product of irreducible
 - polynomials over \mathbb{Z}_7 . (ii) Is $\frac{2}{3}$ a root of $X^{91} + X^{80} - 5 = 0$?
 - (iii) show that I-i is irreducible in ZCiI.
- 2(c), Answer all.
 - (i) Determine the units in ZCi].
 - (ii) List all monic polynomials of degree 2 over \mathbb{Z}_2 which are irreducible.
 - (iii) Define a Unique Factorization Domain (UFD).

[3]

[7] 3(A). Find the splitting field of x^3-1 over \mathbb{R} . Find the splitting field of x4+1 over Q.

3(A). Suppose E is an extension of F of prime [7] degree. Show that, for every a in E, F(a) = F or F(a) = E

> Let K be an extension of F. Suppose that E, and E2 are contained in K and are extensions of F. If [E1:F] and [E2:F] are both prime, show that $E_1 = E_2$ or EINE2 = F.

> > [4]

- Answer any two. 3(B),
 - Find the minimal polynomial for J-3 + J2 (i) over Q.
 - Show that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$.
 - (iii) Let f(X) = X4-1 € QEXJ. Does f(X) have a multiple zero?
 - Answer all, 3(c),
 - Expand the polynomial $(x+1)^3$ in $\mathbb{Z}_3[x]$,
 - State (without proof) the Primitive element Theorem.
 - Find the degree $[Q(\sqrt{2}):Q]$.

E673-	4

	· · · · · · · · · · · · · · · · · · ·	6 7
4(A),	State (without proof) a theorem describing	[7]
, ,	State (without proof) a theorem describing all the subfields of the finite field GF(P")	
	of phe lements,	
	Draw the lattice of subfields of GF(64).	

012

- 4(A). State (without proof) a theorem describing [7] all the subfields of the finite field GF(P") of p" elements.

 Determine the possible finite fields whose largest proper subfield is GF(2⁵).
- 4(B). Answer any two.

4]

- (i) When is a real number of said to be constructible?
- (ii) suppose à is constructible. What can be said about the degree [Q(=):Q].

 (Do not prove).
- (iii) Igive an example of a number which is not constructible.
- 4(c). Answer all.

(3]

- (i) Prove that 45° is a constructible angle.
- (ii) I give a geometrical construction of the length $\sqrt{2}$.
- (iii) Find the points of intersection of the circle $x^2 + y^2 = 1$ and the line y x = 0.

5(A). Let $F = \Omega(\sqrt{3}, \sqrt{5})$. Discuss the lattice of subgroups of Gal(F/Ω), and the lattice of subfields of F.

5(A). Let $w = \cos(2\pi) + i\sin(2\pi)$; Let F = Q(w). Find the Galois group Gal(F/Q)Discuss its lattice of subgroups and the corresponding lattice of subfields of F.

4]

- 5(B). Answer any two.

 (i) Show that S₃ is solvable.
 - (ii) Let F be a field and let $f(x) \in F \subset X I$, Define what is meant by "f(x) is solvable by radicals over F."
 - (iii) The polynomial $g(x) = 3x^5 15x + 5$ has splitting field K and Gal $(K/Q) \approx S_5$.

 Is g(x) solvable by radicals?
 - 5(c). Answer all.
 - (i) Write down the 4th cyclotomic polynomial $\phi_4 \in XI$.
 - (ii) state (without proof) the theorem of Gauss about the constructibity of a regular n-gon
 - (iii) 1-actor X6-1 as a product of irreducible polynomials over Z.

Candidate's Seat No:

M.Sc. (Sem.-III) Examination 505 Mathematics

Time: 3 Hours May-2017

Max. Marks: 70

1. (a) Attempt any ONE.

7

- (i) Let $A = \{(x,y): x>0, y>0, 0< xy<3, x< y<2x\}$, $f(x,y) = y^2$ $g(s,t) = \sqrt{st}e_1 + \sqrt{st}e_2$ for s>0, t>0. Show that g is univalent. Find $\int_A y^2 dV_2(x,y)$ where A denotes the part of hyperbola xy=c, 0< c<3 corresponding to the segment s=c, 1< t<2 in B.
- (ii) Find the area of $A = \{(x, y)/x^2 \le y \le x + 2\}.$
- (b) Attempt any Two.

4

- (i) Evaluate integral $\int_1^0 dx \int_1^0 exp(x+y)dy$...
- (ii) Find the area of $\{(x,y): |y|-1 \le \sqrt{1-y^2}\}$.
- (iii) Find the volume of the tetrahedron with vertices e_1 , $-\epsilon_2$, ϵ_3 , $e_1+2e_2+e_3$
- (c) Answer very briefly.

3

- (i) Is the function f(x) = x |x| bounded? Find its support.
- (ii) Show that $f(x) = \sin(1/x)$ if $x \neq 0$, f(0) = 1 is integrable over A = [-1, 1]
- (iii) Let $A = \{(y, 1)/0 \le y \le 5\}$. Find $V_2(A)$.
- 2 (a) Attempt any ONE.

7

- (i) Let n=3. Define a multicovector of degree 2. Define the 2-covector e^{λ} where $\lambda = (1,2)$. Give a basis of $(E_2^3)^*$.
- (ii) Define r-linear alternating function. If M is r-linear alternating function then prove that $M(h_1,h_2,..,h_r)=0$ whenever $(h_1,h_2,..,h_r)$ is linearly dependent.
- (b) Attempt any TWO.

4

- (i) Let n=3. Give an example of a 3-linear alternation function.
- (ii) Find the area of the triangle with vertices $0, 3e_1 + e_2, e_3 e_2$.
- (iii) Define a a frame. Show that (e_1-e_2, e_2-e_3) and $(3e_1-e_2-2e_3, 2e_1-e_2-e_3)$ are frames for the same vector subspace of E^3 .

(PT.0)

E795-2

- (c) Answer very briefly.
 - (i) For n=5, find δ_{525}^{255}
 - (ii) For n=5, simplify: $(e^1 e^2 + 3e^3) \wedge e^{21}$
 - (iii) For n=5, simplify $e^2 \wedge (3e^1 2e^3) \wedge e^5 \wedge e^3$.
- 3. (a) Attempt any ONE.

7

3

- (i) Define a differential form w of degree r on a domain $D \subset E^n$. When is an r-form w said to be of class $C^{(1)}$? Define the exterior differential dw. Find the exterior differential of $w = cos(xy^2)dx \wedge dz$. Define a closed form. Show that $w \wedge \xi$ is closed if w and ξ are closed.
- (ii) Define the adjoint of r-vector α . Let n=2. Find the adjoint of (a) d(Ndx-Mdy)(b) Mdx+Ndy.
- (b) Attempt any TWO.

4

- (i) Define an exact form. Give an illustration of an exact 1-form.
- (ii) Let n=3, and $\omega=Pdy\wedge dz+Qdz\wedge dx+Rdx\wedge dy$ be a 2-form Find ω^* .
- (iii) Let n=3, and $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$ be a 2-form Find $d\omega$.
- (c) Answer very briefly.

3

- (i) Show that $curl(f\omega) = fcurl\omega + df \times \omega$
- (ii) Define the term: Induced linear transformations.
- (iii) Prove that the cross product is not associative.
- 4. (a) Attempt any ONE.

- (i) Define a coordinate system on a non-empty, relatively open subset of an r-manifold. Give an illustration to explain this coordinate system.
- (ii) Define a regular transformation g from an r-manifold N into an r-manifold M. Explain each term that occurs in the definition.

E 795-3

(b) Attempt any TWO. (i) Consider the transformation $g(s,t)=(s+t)e_1+(s-3t)e_2+(2t-2s-2)e_3$

on $\Delta = \{(s,t)/0 < s+t < 1, s > 0, t > 0\}$. Find $J_g(s,t)$ and $g(\Delta)$. Is g univalent?

- (ii) Let $g(s,t)=ste_1+se_2+te_3, \ \Delta=E^2$. Find $J_g(s,t)$ and $g(\Delta)$.
- (iii) Define compact manifold. Give an example.
- (c) Answer very briefly.

3

4

- (i) Define r-manifold. Give examples of a 1-manifold and a 2-manifold
- (ii) Define a partition of unity for a compact manifold M.
- (iii) Define orientable manifold. Give a simple example.
- 5. (a) Attempt any ONE.

7

- (i) Let D be a regular domain, let n=2 , show that $V_2(D) = -\int_{\delta D^+} y dx$
- (ii) State (only) Green's theorem. Using Green's theorem find the area of the closed unit disc in E^2 .
- (b) Attempt any TWO.

4

- (i) Show that any straightline segment in E^2 has area 0.
- (ii) Define a regular domain in E^3 .
- (iii) Show that the circle in E^2 is a 1-manifold.
- (c) Answer very briefly.

- (i) Let α_n be the measure of the unit n-ball $\{x/|x| \leq 1\}$. Find the value of α_2 and α_3 ?
- (ii) True or false : If A is a countable subset of $\mathbb R$ then M(A)=0.
- (iii) Find the area of the triangle with vertices $2e_3$, $e_1 e_2 + 2e_3$, $e_1 + 3e_3$.

M.Sc. (Sem.-III) Examination 504 Mathematics

Time: 3 Hours

May-2017

[Max. Marks: 70

1(a) Attempt any ONE:

7

(i) Write the dual of the LPP:

Maximize
$$Z = 3x_1 + x_2 + x_3 - x_4$$

Subject to the constraints

$$x_1 + 5x_2 + 3x_3 + 4x_4 \le 4$$

 $x_1 + x_2 = -1$
 $x_3 - x_4 \le -5$
and $x_1, x_2, x_3, x_4 \ge 0$

(ii) Solve the following LPP:

Maximize
$$z = 2x_1 + 3x_2$$

subject to:

$$x_1 + 3x_2 \le 5$$

$$5x_1 + 4x_2 = 12$$

and
$$x_1, x_2 \ge 0$$
.

(b) Attempt any ONE:

4

- (i) State the advantages and limitations of the Linear Programming Model
- (ii) State the basic results of duality
- (c) Attempt any ONE:

3

- (i) Define Basic Solution and Basic Feasible Solution
- (ii) Discuss the role of slack, surplus and artificial variables
- 2 (a) Attempt any ONE:

7

(i) Find the optimum integer solution to the LPP Maximize $Z = x_1 + x_2$

Subject to the constraints: $x_1 + 2x_2 \le 4$

$$2x_1 + 7x_2 \le 5$$

$$x_1, x_2 \geq 0$$

(ii) Use Gomory's cutting plane method to solve the LPP Maximize $Z = 3x_1 + 2x_2$

Subject to the constraints: $2x_1 + 3x_2 \le 6$

$$5x_1 \le 25$$

 $x_1, x_2 \ge 0$ and integers.

P.7.0.

(b) Attempt any ONE:

4

- (i) What is the need for integer programming problems?
- (ii) Discuss steps of Gomory's cutting plane method.
- (c) Attempt any ONE:

3

- (i) What is the role of cutting plane constraint in integer programming problem
- (ii) Discuss the Branching and Bounding terms
- 3(a) Attempt any ONE:

7

(i) Find the optimal cost of transportation using VAM

	Р	Q	R	Supply
Α	26	23	10	61
В	14	13	21	49
С	16	17	29	90
Demand	52	68	80	

(ii) Find the optimal assignment schedule

		I	11	Ш	IV	>
	Α	10	12	15	12	8
	В	7	16	14	14	11
	С	13	14	7	9	9
	D	12	10	11	13	10
	E	8	13	15	11	15

(b) Attempt any ONE:

4

- (i) Discuss the nature of the solution based on opportunity costs
- (ii) Discuss the steps to be performed in solving assignment problem with objective of maximization?
- (c) Attempt any ONE:

3

- (i) Why one cannot use simplex method in solving transportation problem?
- (ii) How to resolve degeneracy in a transportation problem .
- 4(a) Attempt any ONE:

7

(i) Compute auxiliary equations (only) to

Maximize
$$Z = 2x_1x_2 - x_2^2 + 3x_1$$

subject to the constraints: $x_1 + 2x_2 \le 4$, $2x_1 + x_2 \le 2$; $x_1, x_2 \ge 0$.

