1705E653 Candidate's Seat No : #### M.Sc. (Sem.-III) Examination 501 Electronics Science May-2017 Time: 3 Hours] [Max. Marks: 70 ## ELE-501. Thin Film Technology Instruction: (1) Attempt all questions (2) Symbols used have their usual meanings (a) Discuss the creation of low pressure with the help of a rotary pump. 1. [07]What is back streaming? OR (a) Explain the construction, working and application of a penning gauge. [07][07]**(b)** Explain the working of a diffusion pump. OR (b) Write a note on different requirements for substrate holding and deposition [07] monitoring. (a) Define sputtering and sputtering yield. Explain the basic process of sputter 2. deposition and explain how the use of RF increases the deposition rate. 1071 **OR** (a) Explain chemical vapour deposition technique. . [07](b) In case of structural consequences of the thin film, explain (1) role of surface diffusion and binding energy of the substrate (2) role of [07]substrate temperature and deposition rate. OR (b) Write various growth stages of thin films and explain the growth of a continuous |07|thin film on a well cleaned substrate. (a) With diagrams, explain the Low Energy Electron Diffraction (LEED) 3. [07]technique. (PT.0) # E 653-2 OR | | (a) Explain grazing incidence X-ray diffraction method. Write its uses. | [07] | |----|---|------| | | (b) Explain the interaction of energetic incident electron with matter. Using schematic diagram, explain transmission electron microscopy. OR | [07] | | | (b) Which techniques are used for chemical analysis of thin films? Explain the concept and working of Auger electron spectroscopy. | [07] | | 4. | (a) List desired properties of materials used for thin film resistors. (TFR). Explain the designing considerations of TFR. OR | [07] | | | (a) Define sheet resistivity. Explain van der Pauw method to find the sheet Resistivity and bulk resistivity of arbitrary shaped sample. | [07] | | | (b) How thin film diode is realized? Explain the processing steps and <i>I-V</i> characteristics of a typical thin film Schottky diode. OR | [07] | | | (b) Give schematic of co-planar type thin film transistor (TFT). Discuss the designing of TFT. | [07] | | 5. | Answer the following in brief: | [14] | | | i. Write the names of vacuum pump to create UHV. ii. What is the limit of vacuum measurement using Pirani gauge? iii. Write methods of thin film deposition that make use of PVD. iv. Name method/s of thin film deposition that rely on removal of material with melting it v. Define ECR sputtering. vi. Write the principle of flash evaporation. vii. State the principles of pressure measuring instruments. viii. Draw schematic of RHEED. ix. Why electron diffraction is better suited over XRD for thin films? x. Compare EDAX with ESCA. xi. Can LEED be employed as in-situ technique? Why? xii. Draw the staggered electrode structure of thin film transistor. xiii. Draw the schematic of a Schottky diode. | out | | | xiv. Write down Gain-Bandwitdth product of at least two different TFTs. | |