1905E718

Candidate (Sp. 199

M.Sc. (Sem.-III) Examination 503 Electronics Science May 2017

Time: 3 Hours] May-2017

Max. Marks 1 76

ELE-503: Microcontroller-II and Digital Signal Processing-II

Q-1: A)	What is pure software time delay? Write a program <i>Softime</i> for pure software time delay, including 1-second LED blink rate. OR	7
A)	Write a software polled <i>Timer</i> program that uses T0 to generate the basic delay.	7
B)	What is the advantage of using lookup table for the 8051? Write a program <i>Dplock</i> that	7
	holds the square of any number found in the A register using DPTR as a Base address.	
	OR	
В)	Write a program <i>Sendchar</i> using a 12 MHz crystal for UART timing, with delay of 5 milliseconds between characters.	7
0.2.41	Write a program Course to display and CO 122	
Q-2: A)	Write a program Svnseg to display sequence of 0,1,2,3 on four common cathode seven-	7
	segment displays, using lookup table and interrupt-driven program using T0.	
	OR	
A)	Draw the circuit of A/D converter. Hence write Adconv program that can digitize an	
, · · ,		7
	input voltage by sampling input at every 100 microseconds and stores 1000d samples in	
	external RAM locations starting from 4000h.	
B)	Discuss following network configurations in brief drawing respective block diagrams:	¬
,	(i) Star, (ii) Loop, (iii) Star-Loop, and (iv) Loop-Star configuration.	7
	OR	
٥١		
В)	Discuss pulse width measurement. Write a program width that measures the width of a pulse fed to pin 3.3 (INT I).	7
Q-3: A)	Design Low-pass FIR Filter for the following specifications: Cut-off frequency=500 Hz	7
·	Sampling frequency=2000 Hz, Order of the filter N= 8, Filter length required L= $N+1=9$ OR	,
A)	Design High-pass FIR Filter for the following specifications: Cut-off frequency=500 Hz	7
	Sampling frequency=2000 Hz, Order of the filter N= 8, Filter length required L= $N+1=9$,
B)	Design an FIR notch Filter for the following specifications: Cut-off frequencies=400 H.:	7
	and 800 Hz, Sampling frequency=2000 Hz, Order of the filter $N=6$, Filter length required $L=N+1=7$.	
	OR	
B)	Design band pass FIR Filter for the following specifications: Cut-off frequencies=400 Hz	7
,	and 800 Hz, Sampling frequency=2000 Hz, Order of the filter $N=6$. Filter length required $L=N+1=7$.	7

Q-4: A) What is canonical and non-canonical form of filter structure? Design the direct form-I and direct form-II structure for IIR filter of transfer function given by, y(n)+5y(n-1)+4y(n-2)-2y(n-3)=3x(n)-2x(n-2).

OR

- A) Obtain the digital filter transfer function and structure using impulse invariant 7 technique for given $H(s) = \frac{1}{(s+3)(s+5)}$.
- B) Design a Butterworth digital low-pass filter transfer function for the following 7 specifications: Pass band gain required=0.89, frequency up to which pass band must remain more or less steady=25 Hz, amount of attenuation required=0.215, frequency from which the attenuation must start=75 Hz, sampling frequency=300 Hz.

OR

- Obtain the digital filter transfer function and structure using impulse invariant 7 technique for given $H(s) = \frac{1}{\left(s + \frac{1}{\sqrt{2}} + j\left(\frac{1}{\sqrt{2}}\right)\right)\left(s + \frac{1}{\sqrt{2}} j\left(\frac{1}{\sqrt{2}}\right)\right)}$.
- Q-5: Answer the following questions.

14

- 1. What is Gibb's phenomenon?
- 2. The accuracy of FIR filters _____ by increasing number of filter coefficients. (increases, decreases, remains constant, none of above)
- 3. What is frequency warping and prewarping?
- 4. What is the basic difference between type-I and type-II Chebyshev filter?
- 5. Write the location of the first 3 pole for n=3.
- **6.** In Chebyshev filter, we can convert an s-domain equation directly into equivalent in the z-domain. **(TRUE / FALSE)**
- 7. Design the direct form-I structure for IIR filter of transfer function given by $H(Z) = \frac{1 + 7Z^{-2}}{1 4Z^{-3}}.$
- **8.** In microcontroller design, external memory is added by using port 0 as _____ and port 2 as _____
- **9.** The 8051 uses an active reset pin.
- **10.** The memory access time Taccess means _____
- **11.** The meaning of time Tread means
- 12. The keyboard application program must guard against the following possibilities
- **13.** If a counter counts 200 pulses over an interval of 0.1 second, then measured frequency is UF = _____
- 14. What do you mean by Rapid key hit?