2/33

1505E556

Candidate's Seat No :_____

M.Phil Science Examination Paper-II: Chemistry

Time: 3 Hours

May-2017

[Max. Marks: 70]

Q1. Answer the following:

14 marks

(a) Discuss in detail various applications of mass spectrometry.

- (a) Explain the basic principle and working mechanism of differential thermal analysis.
- (b) Describe the working mechanism of any two soft ionization techniques in mass spectrometry.

OR

- (b) Discuss the principle and applications of thermo-gravimetric analysis.
- **Q2**. Answer the following:

14 marks

(a) Compare and discuss important features of scanning electron microscopy and atomic force microscopy.

OR.

- (a) State the basic principle and applications of NMR spectroscopy.
- (b) Discuss the principle and advantages of transmission electron microscopy.

- (b) Explain in detail: chemical shift, shielding and deshielding effect in NMR spectroscopy.
- **Q3.** Answer the following:

14 marks

(a) Discuss the basic principle of polarography and its instrumentation.

- (a) Describe the various components of an infrared spectrometer.
- (b) How the sensitivity increases from Normal Pulse Polarography to Differential Pulse Polarography?-Explain in detail.

OR

(b) Explain the basic principle and applications of Infrared spectroscopy.

P. TO.

Q4. Answer the following:

14 marks

(a) Discuss and compare Raman spectroscopy with Infrared spectroscopy, and give various applications of Raman spectroscopy.

ÓΒ

- (a) Signify the difference between a single-beam and double beam UV-Visible spectrophotometer with their neat diagrams?
- (b) Explain the basic principle and working mechanism of Raman spectroscopy.

OB

(b) Write a brief note on fluorescence spectroscopy along with "Jablonski diagram".

Q5. Answer the following:

14 marks

(a) Discuss the basic principle and applications of LC-MS.

OR

- (a) Explain in detail working mechanism of X-ray diffraction.
- (b) Describe the principle of GC-MS and give its applications.

OF

(b) Explain Bragg's law, and give important applications of X-ray diffraction in solid state analysis.