| <b>Seat No.:</b> |  |
|------------------|--|
|------------------|--|

## **AR-127**

May-2016

### M.Sc., Sem.-II

408: Chemistry

(Organic Chemistry)

Time: 3 Hours] [Max. Marks: 70

**Instructions:** (1) All the questions are compulsory.

- (2) Figures to the right indicate full marks.
- 1. (a) Answer the following questions:

7

- (1) Give any four differences between  $13_{\rm C}$  NMR and  $1_{\rm H}$  NMR.
- (2) Discuss fast Atomic Bombardment (FAB) technique used in mass spectroscopy.

OR

- (1) Indicate the number of signals alongwith approximate position observed in 13<sub>C</sub> NMR spectrum for the following compounds :
  - (i) Phenyl acetic acid
  - (ii) Methyl cyclohexane
  - (iii) 2, 4, 4 trimethyl 1-pentene
- (2) Do the mass fragmentation for the following molecules:
  - (i) 2-Hexanone
  - (ii) Benzamide
- (b) Answer the following:

7

Deduce the structure of the compound from the following spectral data with suitable explanation.

Mol. wt : 136

IR : 2810, 2700, 1683, 1600, 1511, 1315, 1260, 1160, 1024, 833 cm<sup>-1</sup>

 $1_{H} \text{ NMR} : \delta = 3.8 \text{ (S, 3H)}$  $\delta = 6.95 \text{ (d, 2H)}$ 

 $\delta = 7.6$  (d, 2H)

 $\delta = 9.8 (S, 1H)$ 

 $13_{\text{C}}$  NMR:  $\delta = 55.6$ , 114.5, 130.2, 132.1, 164.5, 191

Mass :  $\frac{m}{z}$  = 136, 135, 119, 107, 92, 65, 64, 63, 51

OR

An organic compound exhibits the following spectral data interprete the spectral data and deduce the structure of the compound.

Molecular Formula :  $C_8H_8O_2$ 

 $IR: 1764, 1593, 1493, 1371, 1193, 1031, 925, 749, 692 cm^{-1}$ 

 $1_{H} \text{ NMR} : \delta = 2.3 \text{ (S, 3H)}$ 

:  $\delta = 7.15$  (d, 2H)

:  $\delta = 7.25$  (t, 1H)

:  $\delta = 7.4$  (t, 2H)

 $13_{\text{C}}$  NHR:  $\delta = 20.8$ , 121.7, 125.6, 129.8, 151.1, 169.2

Mass :  $\frac{m}{z} = 136, 95, 94, 66, 65, 63, 51, 50, 43$ 

- 2. (a) Answer the following:
  - (1) Draw Jablonski diagram and explain the term Fluorescence and Phosphorescence.

7

7

7

(2) Explain Norrish type II reaction mechanism with suitable examples.

OR

- (1) What is Paterno-Buchi reaction? Discuss Paterno-Buchi reaction with relevant evidences.
- (2) On the basis of molecular orbital structure at a carbonyl group, explain photo reduction of benzophenone in presence of toluene.
- (b) Answer the following:

Give any two synthesis and four important reactions for Thiazole or Cinnoline.

OR

Give any two synthesis and four important reactions for pyrazole or Quinoxaline.

- 3. (a) Answer the following:
  - 1) How will you prepare methyl vinyl ketone (Michael acceptor) by Mannich reaction? Give complete mechanism of Michael addition reaction with one application.
  - (2) How will you prepare phosphorous ylide? Explain mechanism of reaction in which phosphorus ylide react with carbonyl compounds.

OR

AR-127 2

- (1) What precautions will you take in selecting a base for Darzen's glycidic ester condensation? Explain the conversion of cyclohexanone to cyclohexane carboxaldehyde and acetophenone to 2-phenyl propionaldehyde using this reaction.
- (2) Using Villsmeyer Haack reaction give the mechanism for the preparation of 2, 4-dimethoxy benzaldehyde and P-N, N-dimethyl aminobenzaldehyde using suitable starting material.
- (b) Discuss the principle, mechanism and three synthetic applications of the following reactions.
  - (1) Suzuki reaction
  - (2) Mitsunobu reaction

#### OR

Discuss the principle, mechanism and three synthetic applications of the following reactions :

- (1) Sonogashira reaction
- (2) Birsch reduction

#### 4. Answer the following:

7

7

- (a) Discuss selectivity, mechanism and three utilities of the following reagents.
  - (1) N, N-Dicyclohexyl carbodimide (DCC)
  - (2) Gilman's reagent (Lithium dialkyl cuprate)

#### OR

Discuss selectivity, mechanism and three utilities of the following reagents:

- (1) Grignard reagent
- (2) DIBAL-H
- (b) Discuss selectivity, mechanism and three utilities of the following reagents.

7

- (1) 2, 3-Dichloro –5, 6-Dicyanobenzo Quinone (DDQ)
- (2) 1, 3-dithiane

#### OR

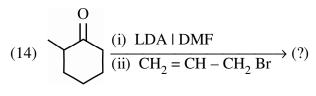
Discuss selectivity, mechanism and three utilities of the following reagents:

- (1) Phase transfer catalysis
- (2) Sodium borohydride

#### AR-127 3 P.T.O.

5. Answer the following questions:

14


- (1) What is Fermi resonance?
- (2) Predict the approximate CMR values of 4-methyl-2-pentanone
- (3) What do you understand by Nitrogen rule?
- (4) What is McLafferty rearrangement?
- (5) Give structures of the following compound:
  - (i) Benzo (h) isoquinoline
  - (ii) 2H, 6H-1 5, 2-dithiazine

(6) 
$$N \xrightarrow{\text{CHC}l_3} N \xrightarrow{\text{CHC}l_3} (?)$$

- (7) What is Quantum Yield?
- (8) What is Knoevenagel condensation?
- (9) What is carbopolladation?
- (10) Which reagent is used in Jones oxidation?
- (11) What is Dieckmann condensation?
- (12) Write structure of Dess-Martin periodinane with one application.

4

(13) On which factors the selectivity of enzyme depend?



AR-127

## COMMON FRAGMENTS LOST

|           | COMMON FRAGMENTS LOST                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular |                                                                                                                                                               |
| Ion       |                                                                                                                                                               |
| Minus     | Fragment Lost Inference structure                                                                                                                             |
| 1         | $\mathbf{H}^{\bullet}$                                                                                                                                        |
| 2         | 2H·                                                                                                                                                           |
| 15        | CH <sub>2</sub> ·                                                                                                                                             |
| 16        | O (ArNO <sub>2</sub> , amine oxides, sulfoxides); NH <sub>2</sub> (carboxamides, sulfonamides)                                                                |
| 17        | HO.                                                                                                                                                           |
| 18        | H <sub>2</sub> O (alcohols, aldehydes, ketones)                                                                                                               |
| 19        | F.                                                                                                                                                            |
| 20        | HF                                                                                                                                                            |
| 26        | CH = CH, $CH = N$                                                                                                                                             |
| 27        | $CH_2 = CH'$ , $HC = N$ (aromatic, nitrites, nitrogen heterocycles)                                                                                           |
| 28        | CH <sub>2</sub> =CH <sub>2</sub> , CO, (quinones) (HCN+H)                                                                                                     |
| 29        | CH, CH,; (ethyle ketones, ArCH, CH, CH,), CHO                                                                                                                 |
| 30        | NH <sub>2</sub> CH <sub>3</sub> , CH <sub>2</sub> O (ArOCH <sub>3</sub> ), NO (ArNO <sub>2</sub> ), C <sub>2</sub> H <sub>4</sub>                             |
| 31        | OCH, (methyl esters), CH <sub>2</sub> OH, CH <sub>3</sub> NH <sub>2</sub>                                                                                     |
| 32        | CH <sub>3</sub> ,OH,S                                                                                                                                         |
| 33        | HS (thiols), (CH <sub>3</sub> and H <sub>2</sub> O)                                                                                                           |
|           |                                                                                                                                                               |
| 34        | H <sub>2</sub> S (thiols)                                                                                                                                     |
| 35        | Cl.                                                                                                                                                           |
| 36        | HCl, 2H,O                                                                                                                                                     |
| 37        | H <sub>1</sub> Cl (or HCl + H)                                                                                                                                |
| 38        | $C_3H_3$ , $C_3N$ , $F_2$                                                                                                                                     |
| 39        | C,H,, HC,N                                                                                                                                                    |
| 40        | CH <sub>3</sub> C ≡ CH                                                                                                                                        |
| 41        | CH'= CHCH'.                                                                                                                                                   |
|           | $\frac{\mathbf{H}_{2}}{\mathbf{C}}$                                                                                                                           |
|           |                                                                                                                                                               |
| 42        | $CH_2 = CHCH_3$ , $CH_2 = C = O$ , $H_2C$ ————————————————————————————————————                                                                                |
|           | O                                                                                                                                                             |
|           |                                                                                                                                                               |
| 43        | C <sub>3</sub> H <sub>7</sub> · (propyl ketones, ArCH <sub>2</sub> -C <sub>3</sub> H <sub>7</sub> ), CH <sub>3</sub> C · (methyl ketones, CH <sub>3</sub> CG, |
|           | where G= various functional groups), CH <sub>2</sub> = CH-O' (CH <sub>2</sub> and CH <sub>2</sub> = CH <sub>2</sub> ),                                        |
|           | HCNO                                                                                                                                                          |
| 44        | CH <sub>2</sub> = CHOH,CO <sub>2</sub> (esters, anhydrides) N <sub>2</sub> O, CONH <sub>2</sub> , NHCH <sub>2</sub> CH <sub>3</sub>                           |
| 45        | CH <sub>3</sub> CHOH, CH <sub>3</sub> CH <sub>2</sub> O (ethyl esters), CO <sub>2</sub> H, CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                    |
| 46        | $(H_2O \text{ and } CH_2 = CH_2)$ , $CH_2CH_2OH_1 \cdot NO_2 (ArNO_2)$                                                                                        |
| 47        | CH <sub>3</sub> S·                                                                                                                                            |
| 48        | CH <sub>3</sub> SH, SO(sulfoxides), O <sub>3</sub>                                                                                                            |
| 49        | ·CH <sub>2</sub> Cl                                                                                                                                           |
| 51        | ·CHF <sub>2</sub>                                                                                                                                             |
|           |                                                                                                                                                               |

| 52 | $C_1H_1$ , $C_2N_2$                                                        |
|----|----------------------------------------------------------------------------|
| 53 | C,H,                                                                       |
| 54 | $CH_2 = CH - CH = CH_2$                                                    |
| 55 | CH <sub>2</sub> = CHCHCH,                                                  |
| 56 | $CH_2 = CHCH_2CH_3$ , $CH_3CH = CHCH_3$ , $2CO$                            |
| 57 | $C_1H_2$ : (butyl ketones), $C_2H_2CO$ (ethyl ketones, EtC=OG, G = various |
|    | structural units)                                                          |
| 58 | NCS, (NO + CO), CH, COCH, C, H,                                            |

Chemical Shifts for Carbon Atoms in Carbon - 13 Nuclear Magnetic Resonance Spectra

| Type of Carbon Atom              | δ*    | Type of Carbon Atom                    | δ*      |
|----------------------------------|-------|----------------------------------------|---------|
| RCH <sub>2</sub> CH,             | 13–16 | RCH = CH <sub>2</sub>                  | 115–120 |
| RCH <sub>2</sub> CH <sub>3</sub> | 16-25 | RCH = CH <sub>2</sub>                  | 125-140 |
| R,CH                             | 25-38 | RC≡N                                   | 117-125 |
| 0                                |       | ArH                                    | 125-150 |
| CH,CR                            | ~30   | , ************************************ |         |
| O C                              |       | Ŷ                                      |         |
| CH <sub>2</sub> COR              | ~20   | RCOR'                                  | 170-175 |
| RCH <sub>2</sub> Cl              | 40-45 | 0                                      |         |
|                                  | 2     | RCOH                                   | 177–185 |
| RCH <sub>2</sub> Br              | 28–35 | O                                      |         |
|                                  | ·     | RCH                                    | 190-200 |
| RCH <sub>2</sub> NH <sub>2</sub> | 37-45 | O<br>· II                              |         |
|                                  |       | RCR'                                   | 205-220 |
| RCH <sub>2</sub> OH              | 50-64 |                                        |         |
| RC ≡ CH                          | 67–70 |                                        |         |
| RC ≡ CH                          | 74–85 |                                        |         |

# WOODWARD RULES FOR CONJUGATED DIENE ABSORPTION

 $\pi \rightarrow \pi$  Transitions

| Acyclic diene or heteroannular diene transoid) | 214 | nm |
|------------------------------------------------|-----|----|
| Homoannular diene (cisoid)                     | 253 | nm |
| Increment for each:                            |     |    |
| Double bond extending conjugation              | 30  | nm |
| If double bond conjugation is cis              | 40  | nm |
| Exocyclic double bond                          | 05  | nm |
| Increment for each substituents:               |     |    |
| Alkyl group or ring residue (R)                | 05  | nm |
| Chlorine (CI) or Bromine (Br)                  | 05  | nm |
| Alcohol (OH) or Alkoxy (OR)                    | 06  | nm |
| Ester (OCOR)                                   | 00  | nm |
| Amine (NR <sub>2</sub> )                       | 60  | nm |
| Thioether (SR)                                 | 30  | nm |

## WOODWARD RULES FOR αβ - UNSATURATED ALDEHYDES AND KETONES ABSORPTION

 $\pi \rightarrow \pi^{\circ}$  Transitions

| δ γβα Z Z = H aldehyde Z=1                                   | R kct      | one ' |
|--------------------------------------------------------------|------------|-------|
| _C_C_C_C_O 2= OH, -OR: acid                                  | 1.65       | ter   |
| Atid, ester                                                  | 143<br>208 | nm    |
| αβ - Unsaturated aldehyde                                    | 215        | nm    |
| αβ – Unsaturated acyclic or six carbon ring ketone           | 202        | nm    |
| aβ - Unsaturated five carbon ring ketone Increment for each: | ~~~        | ••••  |
| Double bond extending conjugation                            | 30         | nme   |
| If double bond conjugation is cis                            | 40         | nm    |
| Exocyclic double bond                                        | 05         | nm    |
| Increment for each substituents:                             | •          |       |
| Alkyl group or ring residue (R)                              | 10         | nm    |
| Alkyl gloup of fing residue (11)                             | 12         | nm.   |
| . · · · · · · · · · · · · · · · · · · ·                      | 18         | nm    |
| •                                                            | 15         | nm    |
| Chlorine (Cl) β, γ, δ                                        | 12         | nm    |
| Bromine (Br)                                                 | 25         | nm    |
| β β                                                          | 30         | nm ·  |
| ٧, ١                                                         | 25         | um ,  |
| Alcohol (OH) a                                               | 35         | nm    |
| β                                                            | 30         | nm    |
| ·                                                            | 30         | πm    |
| 8                                                            | 50         | nm '  |
| Alkoxy (OR)                                                  | 35         | nm    |
| β                                                            | 30         | nm    |
| Ţ.                                                           | 17         | nm    |
| ***                                                          | 31         | nm    |
| Ester (OCOR) α, β, γ, δ                                      | 06         | nm    |
| Amine (NH <sub>2</sub> , NHR, NR <sub>2</sub> ) β            | 95         | nm    |
| Thioether (SR)                                               | 85         | nm    |
| •                                                            |            |       |