ગુજરાત યુનિવર્સિટી

326-44272-9-2044

નં.એકેડેમિક/ ૮૭ /૨૦૧૧

29/8/11

તા.૧૩/૦૭/૨૦૧૧

પ રિપત્ર : ૨૩

આથી માન.કુલપતિશ્રીના આદેશાનુસાર જણાવવાનું કે, M. Sc. Biochemistry વિષયના અભ્યાસક્રમ (Semester - I & III)માં જરૂરી સુધારા આ સાથે સામેલ છે જેનો અમલ વર્ષ ૨૦૧૧-૧૨થી કરવાનો રહેશે, જેની નોંધ લેવા વિનંતી.

આપનો વિશ્વાસુ

કા.કુલસચિવ**્ય**

બિડાણ-ઉપર મુજબ .

પ્રતિ

- Co-ordinator, Department of Biochemistry, University School of Sciences, Gujarat University, Ahmedabad-9
- ર. પરીક્ષા નિયામકશ્રી. પરીક્ષા વિભાગ, ગુજરાત યુનિવર્સિટી, અમદાવાદ-૯.
- _____3. ગ્રંથપાલશ્રી, ગુજરાત યુનિવર્સિટી ગ્રંથાલય, ગુજરાત યુનિવર્સિટી, અમદાવાદ-૯.
 - ૪. વિભાગીય વડાશ્રી, પી.જી.વિભાગ, ગુજરાત યુનિવર્સિટી, અમદાવાદ-૯.
 - ૫. શ્રી હરીશભાઇ ભારદ્રાજ, પરીક્ષા વિભાગ, ગુજરાત યુનિવસિટી. અમદાવાદ-૯
 - ક. સબંધિત ટેબલ કલાર્ક, પરીક્ષા વિભાગ, ગુજરાત યુનિવર્સિટી, અમદાવાદ-૯
 - ૭. શ્રીમતી ડૉ. વી. ચારી., સ્કુલ ઓફ કોમર્સ, ગુજરાત યુનિવર્સિટી. અમદાવાદ-૯

BCH 404 PRINCIPLES OF MICROBIAL SCIENCES

UNIT 1 Introduction to Microbiology and Microorganisms

Scopes and Avenues of Microbiology Historical developments in Microbiology

nistorical developments in Microbiology

General Characteristics of major group of Microorganisms

- a. Bacteria b. Rickettesia c. Chlamydia
- d. Mycoplasma e. Fungi f. Viruses g. Sub viral entities like Prions, Viroids, Virusoids and Satellite RNAs.

UNIT 2 Microbial Taxonomy

Importance and systems of Classification

Status of microorganisms into kingdoms

Basic principles of nomenclature and classification

Criteria used for classification and identification of

microorganisms

Genetic approaches used for Microbial taxonomy

UNIT 3 Morphology, Reproduction and Significance

Bacteria: Staphylococcus (Gram positive) and Eschericheria

(gram negative)as model examples.

Moulds: Rhizopus, Penicillium, Puccinia as model examples

Yeasts: Saccharomyces as model examples

Bacterial viruses: Coliphage T4 and lambda phage as examples Animal viruses: Adenovirus, Influenza virus as model examples

Plant viruses: TMV as model examples.

UNIT 4 Microbial Physiology and Genetics:

Modes of uptake of nutrients in microorganisms, Nutritional requirements and Nutritional classification of microorganisms.

An overview of microbial metabolism

Microbial Growth:

Growth in prokaryotes and modes of cell division

Mathematical nature and expression of growth,

Normal growth curve of microbial population and Diauxic growth

Continuous cultivation of microorganisms.

Methods of measurement of microbial growth

Effect of environment of on microorganisms

General principles of Microbial Genetics:

DNA and its replication

Bacterial plasmids and transposable elements

Recombination methods: Transfection, Transduction, Conjugation.

Parasexually.

SEM- III BCH 504 IMMUNOLOGY

UNIT 1 Basic Immunology

History and Significance Immunity and its types

Immune System, Cell and Organs involved

Complement System

Cytokines and their significance

Cancer and Immune response (Tumor Immunology)

UNIT 2 Basic Immunology II

Antigens: General properties, criteria for antigens, types of

Antigens

Antigenicity MHC, HLA complex

Immunoglobulins: Basic structure and types

Immunogenetics: Genetic basis of clonal selection and generation of

antibody diversity

In vivo antigen-antibody interactions.

UNIT 3 Immunotechnology

UNIT 4

In vitro antigen-antibody reactions and diagnostic significance Agglutination tests, Precipitation and Immunodiffusion tests Radioimmunoassay, IRMA, ELISA / ELISPOT, RAST Hybridoma technology applications of monoclonal antibodies Vaccines and Immunotherapy

Hypersensitivity Reactions, Tolerance and Autoimmunity

Autoimmune diseases

Dysfunction Immunity

Immunodeficiency and their consequences

Transplantation immunology,

Hazards of vaccine