Seat No. : _____

ND-141

December-2015

M.Sc., Sem.-III

502 : Statistics (Design of Experiment)

Time : 3 Hours]

[Max. Marks: 70

Instructions :	(1)	All questions carry equal marks.
	(2)	Attempt all questions.

1. (a) Discuss analysis of general block designs in brief.

OR

In usual notations for a block design, prove that

b + rank (c) = v + rank (D). Verify this for following block design :

Block

I A B II C D

(b) Discuss analysis of two way designs in brief.

OR

State and prove the necessary and sufficient condition for a block design to be orthogonal.

2. (a) Check whether the design with incidence matrix $N = E_{33}$ is connected, balanced and orthogonal.

OR

Show that BIBD (v, b, r, k, λ) is a connected design but not orthogonal.

- (b) If a BIBD (v, b, r, k, λ) exists then show that
 - (i) $r(k-1) = \lambda(v-1)$
 - (ii) $b \ge v$

OR

Discuss Intra block analysis of variance of a BIBD.

ND-141

P.T.O.

3. (a) Define SBIBD (ν , r, λ). Prove that in SBIBD (ν , r, λ), there are λ treatments common between any two blocks.

OR

If v, b, r, k, n_i , λ_i , i = 0, 1, 2, ... n are parameters of PBIBD then in usual notations show that

(i)
$$\sum_{i=0}^{m} n_i \lambda_i = rk$$
 (ii) $n_i P_{jk}^i = n_j P_{ik}^j = n_k P_{ji}^k$

- (b) Define RBIBD ($\nu = nk$, b = nr, r, k, λ) and show that for RBIBD, $b \ge \nu + r 1$. OR Construct PBIBD using a 'CUBE'.
- (a) Define 2^m and 3^m factorial designs. Describe Yates' method for a 2^m factorial design. Discuss concept of confounding in factorial designs.

OR

Construct a 2^5 factorial design in blocks of 8 plats confounding the interactions ACD and BDE. Determine the other interactions which are also confounded.

(b) Define $GF(p^n)$. Construct GF(5).

OR

Discuss various methods of constructing BIBD.

- 5. Answer following in brief : (any seven)
 - (1) For a block design in usual notations show that

(i)
$$E_{Iv}Q = 0$$
 (ii) $E_{Ib}P = 0$

- (2) Define :
 - (i) Elementary Treatment Contrast
 - (ii) Normalized Treatment Contrast.
- (3) For a BIBD (v, b, r, k, λ) , show that $r > \lambda$.
- (4) Define Affine Resolvable BIBD. State whether following is ARBIBD. $v = 6, b = 10, r = 5, k = 3, \lambda = 2.$
- (5) Define Youden square design. Explain the relationship of this design with(i) BIBD (ii) LSD
- (6) State the difference between PG (N, S) and EG (N, S).
- (7) What is meant by 'm-class association scheme'?
- (8) Define a complete set of Mutually Orthogonal Latin Squares (MOLS). State how MOLS of side 3 can be constructed ?

ND-141