				Seat No.:	
(N	lucle	ar P	hysic	NB-136 December-2015 M.Sc., Sem. III 501: Physics es, Advanced Quantum Mechanics – 1 and Instrumentation)	
Tim	e: 3	Hour	rs]	[Max. Marks:	70
Inst	ructio	ns:	(1)	Attempt all questions.	
			(2)	All questions carry equal marks.	
			(3)	Symbols have their usual meaning.	
			(4)	Scientific calculator is allowed.	
1.	(A)		te type	tes of excitations and derive the expression $\frac{N_{ortho}}{N_{para}} = \frac{I+1}{I}$ from molecular etra.	7
				OR	
				nuclear properties and discuss electric quadrupole moment and show ence of quadrupole moment in terms of $I \ge 1$.	
	(B)			ef description of hyperfine structure of atomic spectra and also explain external magnetic field on the hyperfine structure.	7
				OR	
				the molecular beam experiments on hydrogen and deuteron and also results.	
2.	(A)	Writ	te diff	Ferent types of potentials. Explain the ground state of deuteron.	7
				OR	
				xpression on scattering cross-section of neutron-proton scattering MeV energies.	

OR

(B) Discuss proton-proton scattering at low energy and obtain scattering differential

7

Write a short note on Yukava's meson theory of nuclear forces.

cross-section σ_{sc} .

NB-136 1 P.T.O.

3.	(A)	Discuss Green function method to obtain the solution of schrodinger equation. Show that scattering amplitude is the Fourier transformation of potential.	7
		OR	
		Discuss Eikonal approximation and derive expression for scattering amplitude.	
	(B)	Obtain scattering amplitude (θ, ϕ) in terms of phase shift δ_1 . Also obtain total	
		differential scattering cross-section σ .	7
		OR	
		Derive condition for Born-approximation for scattering amplitude.	
		$\left \int\limits_0^\infty \left(e^{2ikr}-1\right)V\left(r\right)dr\right <<\frac{\hbar^2k}{m}. \ \ Obtain \ condition \ for \ low \ energy \ scattering \ with square \ well \ potential.$	
4.	(A)	Define transducer and state its desired characteristics. Explain magnetic search coil.	7
		OR	
		What do you mean by sensitivity and linearity of a transducer ? Explain optical transducer.	
	(B)	What do you mean by phase sensitive detection? Explain concept of such detection and give block diagram of Lock in Amplifier.	7
		OR	
		"In a multistage cascade amplifier, the noise due to the first stage must be made minimum" – Justify.	
5.	Ans	wer in brief :	14
	(1)	Draw the noise spectrum of a typical laboratory system.	
	(2)	Differentiate between Johnson noise and flicker noise.	
	(3)	Give a schematic of LVDT transducer.	
	(4)	What will be the value of spherical harmonics for $m = 0$?	
	(5)	What will be the contribution to the total scattering cross-section from \boldsymbol{S} and \boldsymbol{P} waves ?	
	(6)	What will be the unit of ' α ' in the expression of screened coulomb potential ?	
NB-	-136	2	

(7)	Scattering amplitude for s-wave is independent of scattering angle (TRUE/FALSE).
(8)	State the value of nuclear radius.
(9)	What is the value of nuclear density of a nucleus?
(10)	Binding energy/Nucleon (B/A) remains constant between $A = \underline{\hspace{1cm}}$ and decreases for $A = \underline{\hspace{1cm}}$ and $A = \underline{\hspace{1cm}}$.
(11)	Scattering length is positive is indicate state whereas negative indicate
(12)	In case of Heisenberg potential, $L + S = \underline{\hspace{1cm}}$ for even ψ function.
(13)	Write the equation for Gaussian potential $V(r) = \underline{\hspace{1cm}}$.
(14)	Write definition of Hyperfine structure.

NB-136 3

NB-136 4