	Seat No. :					
	ZA-104					
			April-2014			
			M.Sc. SemIV			
			Mathematics			
			MAT-507: (Functional Analysis – II)			
Tin	ne: 3	Hou	[Max. Marks :	70		
Inst	tructio	on:	Each question carries equal 14 marks.			
1.	(a)	Atte	empt any one : Prove that the set of all self-adjoint operators in B(H) form a closed real	7		
		(2)	linear subspace of B(H). If A is a positive operator, prove that I + A is invertible.			
	(b)	Atte	empt any two :	4		
		(1)	Prove that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ represents a normal operator on \mathbb{R}^2 if and only if $b = c$ or			
		(2)	else $b = -c$, $a = d$. Prove that $O \le A \le B$ does not imply that $A^2 \le B^2$.			
		(3)	Prove that $T \in B(H)$ is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.			
	(c)	Atte	empt all : If $T \in B(H)$ is self-adjoint and non-zero, prove that T^2 is also self-adjoint and non-zero.	3		
		(2) (3)	Prove or disprove: Product of two positive operators is positive. If H is a Hilbert space, prove H* is also a Hilbert space.			
2.	(a)	Atte	empt any one :	7		
		(1)	If P is a projection on H with range M and nullspace N, then prove that M \perp N if and only if P is self-adjoint, in this case, N = M $^{\perp}$.			
		(2)	If P is a projection with range M, prove that $x \in M \Leftrightarrow Px = x \Leftrightarrow Px = x $.			
	(b)		empt any two :	4		
		(1)	If A and B are self-adjoint, then prove that $AB = 0$ if and only if range of A is orthogonal to the range of B.			
		(2)	Prove that the set of all unitary operators in B(H) is closed in B(H).			

(3) If T is unitary, prove that T is onto and $R(\overline{T}) = H$.

1

ZA-104

P.T.O.

	(1)	Give an example of a normal operator that is not unitary.		
	(2)	Give an example of a self-adjoint operator that is not positive.		
	(3)	Give an example of an isometry that is not invertible.		
(a)	Attempt any one:			
	(1)	Let $T \in B(H)$ be normal with spectrum $\{\lambda_1, \lambda_2, \dots, \lambda_m\}$.		
		Prove that T is positive $\Leftrightarrow \lambda_i \ge 0$ for each i and		
		T is unitary $\Leftrightarrow \lambda_i = 1$ for each i.		
	(2)	If $T^K = 0$ for some positive integer k then prove that $\sigma(T) = \{0\}$.		
(b)	Attempt any two :			
	(1)	For a non-singular $T \in B(H)$, prove that $\lambda \in \sigma(T) \Leftrightarrow \lambda^{-1} \in \sigma(T^{-1})$.		
	(2)	Define similar matrices, prove that matrices		
		$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \text{and} \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \text{are similar.}$		
	(3)	Find an operator on \mathbb{R}^2 whose eigen spectrum σ_e is empty.		
(c)	Atte	mpt all:	3	
	(1)	Find a linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\sigma(T) = \left\{\frac{1}{2}\right\}$.		
	(2)	Describe the spectrum of $T^K + 1$ in terms of the spectrum of T .		
	(3)	Give an $n \times n$ matrix A such that $A^{n-1} \neq 0$, but $A^n = 0$.		
(a)	Atte	mpt any one :	7	
	(1)	If X is a normed linear space and $A \in B(X)$ is of finite rank, then prove that $\sigma_e(A) = \sigma(A)$.		
	(2)	If X is a Banach space then prove that the set of all regular elements in $B(X)$ is open in $B(X)$ and the mapping $A \to A^{-1}$ is continuous.		
(b)	Attempt any two :			
	(1)	Find the spectrum of A : $l^p \to l^p$ (1 $\leq p \leq \infty$) given by A($x_1, x_2, x_3,$) = $(x_1, x_{2/2}, x_{3/3},)$.		
	(2)	Find an operator T on C[0, 1] such that $\sigma(T) = [0, 1]$.		
	(3)	If A is the right shift operator on l^2 , find the approximate eigen spectrum $\sigma_a(A)$.		

2

3

(c) Attempt **all**:

3.

4.

ZA-104

(c) Attempt all:

3

- (1) Give statement (only) of Gelfand Mazur theorem, spectral radius formula.
- (2) Does there exist $T \in B(H)$ such that $\sigma(T) = \mathbb{R}$? Justify your answer.
- (3) Give an example of a projection on a Hilbert space whose spectrum is $\{0, 1\}$.

5. (a) Attempt any **one**:

7

- (1) If F and G are compact linear operators on X, prove that F + G is also compact linear.
- (2) Let X and Y be normal linear spaces and $F: X \to Y$ be linear. Prove that F is compact \Leftrightarrow for every bounded sequence (x_n) in X, $(F(x_n))$ has a subsequence which converges in Y.

(b) Attempt any **two**:

4

- (1) Define compact, linear map on a normed linear spaces. Give two examples of compact linear maps.
- (2) If X is infinite dimensional normed linear space and A is a compact operator in X, prove that $O \in \sigma_a(A)$.
- (3) Define the term : bounded below. If $T \in B(X)$ is bounded below, prove that T is injective.

(c) Attempt all:

3

- (1) Give an example of a bounded, linear operator that is not compact. Justify your answer.
- (2) Prove or disprove $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (y, x) is compact, linear map.
- (3) Prove that every compact, linear map is a bounded, linear map.

ZA-104 3

ZA-104 4