Seat No.:	
------------------	--

15G-116

May-2015

M. Sc., Sem.-II

410: Statistics

(Computer Programming)

Time: 3 Hours] [Max. Marks: 70

Instruction: All questions carry equal marks.

1. (a) What are the major functions performed by an Operating System? Explain the terms Multiprocessing and Multitasking with suitable examples.

OR

Explain the terms:

- (i) Hardware
- (ii) Software
- (iii) Programmes
- (iv) Data
- (v) File
- (vi) Document
- (vii) User

Define an Algorithm. Discuss its advantages and disadvantages.

(b) Economic Order Quantity can be evaluated from the equation $Q = \sqrt{\frac{2RS}{I}}$. Where R is the yearly requirement, S is the setup cost and I is inventory carrying cost per item. Draw a flow chart to compute EOQ of 100 items.

OR

The mean arrival rate of persons at a cinema house ticket window is λ and the mean service rate with which the ticket issuer can issue tickets is μ . If it is assumed that the arrival and the service process follow a Poisson distribution, then the probability that there are n persons waiting in a queue is

$$P_n = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) \text{ where } \frac{\lambda}{\mu} < 1.$$

If $\mu = 20$, $\lambda = 4$, draw a flow chart to compute P_n for $n = 0, 1, 2, 3 \dots 20$.

2. (a) Explain the following terms:

- (i) Constants and variables.
- (ii) Type declaration instruction.
- (iii) Arithmetic instruction.
- (iv) Input output statements.
- (v) Header files.

OR

Define the following terms with suitable examples.

- (i) If statement
- (ii) Multiple statements within if
- (iii) The if else statement
- (iv) Nested if else statement
- (v) Logical operators

(b) Let X be a r.v. having following probability distribution:

X :	x_1	x_2	x_3	x_4	x_5	x_6
$\mathbf{P}(\mathbf{X} = x)$	p_1	p_2	p_3	p_4	p ₅	p_6

Write a C⁺⁺ programe to obtain E (x^2)

OR

Write a C⁺⁺ programe to find sum = $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{k^2}$

3. (a) Explain:

- (i) While LOOP
- (ii) DO LOOP
- (iii) For LOOP
- (iv) DO while LOOP
- (v) Nested LOOPS giving approximate illustrations.

OR

Explain break and continue statements. Discuss decisions using 'switch' and compare it with if-else ladder.

(b) Write a C⁺⁺ programe to compute the following function

$$f(x) = \begin{cases} x^2 + 5 & \text{if } x \ge 0\\ x - 2 & \text{if } x < 0 \end{cases}$$

OR

Consider the quadratic polynomial $y = 2x^2 - 5x + 3$. Write a C++ programe which finds y for which x assumes values from '- 10' to '+ 10' in steps of 2.

4. (a) Define 'Function'. Discuss its utility. Explain painters with suitable illustrations.

OR

Define 'Arrays'. Explain two dimensional and three dimensional Arrays with suitable examples. Discuss Array of Painters.

(b) A factory gives following rates of commission for monthly sales of the Product.

Monthly Sales (in ₹)	Commission
Below 20,000	No commission
20001 to 25000	5% commission
25001 to 35000	7% commission
Above 35000	10% commission

Write a C⁺⁺ programe to read the sales and print the commission.

OR

Write C^{++} programe to obtain value of 2×2 Two-person zero sum game with saddle paint having pay off Matrix of Player A as Player B.

- 5. Complete the following statements by filling gaps (any **fourteen**).
 - (a) The conversion of binary No. (1001.11)₂ into corresponding octal No. is _____.
 - (b) The conversion of binary No. $(11110011.101)_2$ in to corresponding hexadecimal No. is _____.
 - (c) The decimal equivalent of binary No. $(1110)_2$ is _____.
 - (d) The conversion of decimal No. $(50.25)_{10}$ into corresponding binary No. is .
 - (e) The conversion of hexadecimal No. (ADF3)₁₆ into corresponding binary No. is .
 - (f) The conversion of hexadecimal No. (BED)₁₆ into corresponding Octal No. is ______.
 - (g) The conversion of decimal No. $(75.50)_{10}$ into corresponding hexadecimal No. is _____.

- (h) The conversion of hexadecimal No. $(CADF)_{16}$ into corresponding decimal No. is
- (i) $(111)_2 \times (101)_2 = \underline{\hspace{1cm}}$.
- (j) If j is an integer, after operation j = 25/8 + 15/7*2; the value of j will be _____.
- (k) If x is an integer variable, the expression x = 18.1/25.4*(24.5 + 3)*2/3 evaluates to _____.
- (l) The conversion of Octal No. $(45.75)_8$ into corresponding hexadecimal No. is _____.
- (m) The conversion of Octal No. (634)₈ into corresponding binary No. is _____.
- (n) The equation $y = \frac{\frac{5}{x_1} + 8\left(\frac{1}{x_2} + \frac{1}{x_3}\right)}{\left(\frac{2}{x_5} + \frac{3}{x_6}\right)}$ can be converted to C⁺⁺ statement as _____.

4

(o) 'Turnery Operator' can be defined as _____.