

B.Sc Sem.-5 Examination

CC 304

Statistics

Time : 2-30 Hours]

November-2024

[Max. Marks : 70]

Instructions:

1. All questions are compulsory. Figures to the right show marks of each question.
2. Statistical tables will be provided on request. Use of scientific calculator is allowed.

Q. 1 a In context of Analysis of one – way classification, state a linear model, 7 hypotheses, assumptions, lay-out and ANOVA TABLE.

b Give lay out and statistical analysis of Completely Randomised Design. 7

OR

a In usual notations, for one – way classification, prove that $E(SS_{Factor}) = (k - 1)\sigma^2$. 7

b Write a short note on Completely Randomised Design. State its merits and demerits. 7

Q. 2 a Stating linear model for two way analysis of variance, if, Y is an observable random variable with observations y_{ij} , then in usual notations, prove that $\hat{\mu} = \bar{y}_{oo}$ and $\hat{\alpha} = \bar{y}_{io} - \bar{y}_{oo}$ 7

b Give lay out and state merits and demerits of Randomised Block Design. How do you identify that given design is a Randomised Block Design? 7

OR

a Derive the formula to estimate one missing yields in Randomised Block Design. 7

b Derive expected value of total sum of squares for two way classification. 7

Q. 3 a Explain, in brief, Latin Square Design. Give Statistical Analysis of Latin Square Design. 7

b Derive the formula to estimate two missing yields in Latin Square Design. 7

OR

a Give Merits and Demerits of Latin Square Design 7

b Derive efficiency of Latin Square Design over Completely Randomised Design. 7

Q. 4 a Write a short note on factorial experiments. 7

b For three factors N, P and K, each at two levels, show that main effect of factor N is $\frac{(n+1)(p-1)(k-1)}{8}$. 7

OR

a Define confounding, total and partial confounding giving appropriate example. 7

b Define Yate's procedure for 2^2 factorial experiments. 7

Q. 5 Answer the following 14

1 Define Analysis of Variance.

(P.T.O)

1

- 2 State different models used in Analysis of Variance.
- 3 What is treatment?
- 4 Do you agree that Completely Randomised Design is also used when one or more observations are missing?
- 5 Define Plot and block.
- 6 State the principles used in Randomised Block Design.
- 7 If the underlying experimental material is heterogeneous, do you suggest Completely Randomised Design?
- 8 State the formula of one missing yield for Randomised Block Design.
- 9 Give a situation, where Latin Square Design is applicable.
- 10 How do you identify Latin Square Design?
- 11 State the formula for one missing yield in Latin Square Design.
- 12 Can we consider Latin Square Design as a three way classification?
- 13 What is simple effect?
- 14 Do you agree that factorial experiments are a modified form of basic experimental design?

--XX---XX---XX--