

B.Sc. Semester-5 Examination**CC 304****Mathematics****March-2024****Time : 2-30 Hours]****[Max. Marks : 70**

Instruction : (i) All the questions are compulsory and carry equal marks.
 (ii) Notations are usual everywhere.
 (iii) The right hand side figures indicate marks of the question/sub-question.

Q 1 (a) Prove that $K \subset \mathbb{R}^n$ is a convex set if and only if every convex linear combination of elements in K belongs to K . 7
 (b) If $S_1 = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \leq 9\}$ and $S_2 = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \geq 9\}$. Then determine the convexity of the sets S_1 and S_2 . Also obtain $S_1 \cup S_2$. Is $S_1 \cup S_2$ convex? Justify your answer. 7

OR

Q 1 (a) Prove that the nonempty set S_F of all feasible solutions of a LP Problem is a convex set. 7
 (b) A Firm manufactures two products: Chairs and Tables. These products are processed on two machines A and B. A chair requires 2 hours of processing time on machine A and 3 hours on machine B. A table requires 5 hours of processing time on machine A and no time on machine B. There are 16 hours of time available for machine A and 20 hours on machine B during any working day. Profit gained by the firm per a chair is Rs 40 and that per a table is Rs 60.

What should be the daily production of each of the two products to maximize total profit of the firm?

Formulate the linear programming problem.

Q 2 (a) Explain Simplex algorithm for solving linear programming problem. 7
 (b) Solve the following LPP by Two Phase Method: 7

$$\text{Maximize } Z = 3x_1 + 2x_2$$

$$\text{Subject to } 2x_1 + x_2 \leq 2$$

$$3x_1 + 4x_2 \geq 12 \quad \text{and} \quad x_1, x_2 \geq 0.$$

OR*P.T.O*

Q 2 (a) Apply the Simplex Method to Maximize $Z = 10x_1 + x_2 + 2x_3$

7

Subject to $x_1 + x_2 - 2x_3 \leq 10$

$4x_1 + x_2 + x_3 \leq 20$ and $x_1, x_2, x_3 \geq 0$.

(b) Solve the following LPP by big-M Method :

7

Maximize $Z = 3x_1 + 2x_2 + 3x_3$

Subject to $2x_1 + x_2 + x_3 \leq 2$

$3x_1 + 4x_2 + 2x_3 \geq 8$ and $x_1, x_2, x_3 \geq 0$.

Q 3 (a) Prove that a Dual of a Dual is the primal LP Problem.

7

(b) Use the Dual Simplex Method to solve the following LP Problem:

7

Minimize $Z = 2x_1 + x_2 + x_3$

Subject to $4x_1 + 6x_2 + 3x_3 \leq 8$

$-x_1 + 9x_2 - x_3 \geq 3$

$-2x_1 - 3x_2 + 5x_3 \leq -4$ and $x_1, x_2, x_3 \geq 0$.

OR

Q 3 (a) Explain Duality and advantages of duality.

7

(b) Solve the following integer linear programming problem by cutting plane method :

7

Maximize $Z = x_1 + x_2$

Subject to $3x_1 + 2x_2 \leq 5$

$x_1 \leq 2$

$x_1, x_2 \geq 0$ and are integers.

Q 4 (a) What is a transportation problem.?

7

Explain how is it a special case of the Linear Programming problem.

(b) Solve the following Transportation Problem by MODI Method :

7

Factory	Warehouses				Capacity
	W ₁	W ₂	W ₃	W ₄	
F ₁	15	26	46	6	7
F ₂	66	26	36	56	9
F ₃	36	4	66	16	18
Requirements	5	8	7	14	34

OR

Q 4 (a) Prove that the necessary and sufficient condition for the existence of feasible solution to the TP is $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$.

7

(b) Solve the following Assignment Problem:

7

	A	B	C	D
I	38	33	36	39
II	40	33	32	38
III	36	32	32	35
IV	30	28	26	32

Q5 Answer any **SEVEN** of the followings in Short :

14

- (a) Define: Vertex of a convex set
- (b) Define: A Convex Polyhedron.
- (c) Define: An Artificial Variable.
- (d) Define: Standard form of a LP Problem.
- (e) When a LP Problem is said to have an unbounded solution?
- (f) When the Dual Simplex Method is applicable to solve a LP Problem ?

(g) Find the Standard primal form of the following LPP:

$$\text{Maximize } Z = 4x_1 + 3x_2 + 2x_3$$

$$\text{Subject to constraints: } 2x_1 - x_2 + x_3 \leq 3$$

$$x_1 + x_2 - x_3 \geq 4$$

$$x_1 + x_2 + x_3 = 5 \text{ and } x_1, x_2, x_3 \geq 0$$

Determine True or False for the following statements :

- (h) Every integer linear programming problem is a linear Programming Problem.
- (i) If Dual LPP has an unbounded solution then primal has no feasible solution.
- (j) Every Linear Programming Problem has a solution.
- (k) Every transportation problem is an assignment Problem.
- (l) An assignment Problem is solved by the Hungarian Method.

— — — × — — — × — — —