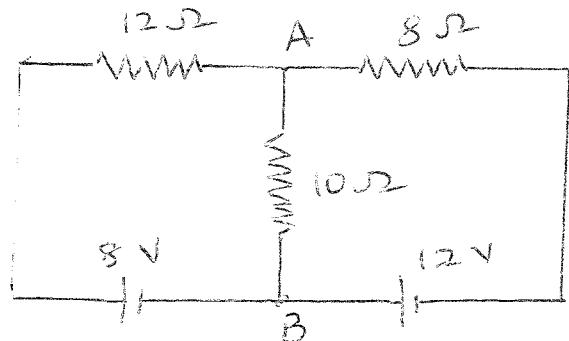


B.Sc. Sem.-2 (NEP) Examination

DSC-M-ELE-123 (T)

Electronics

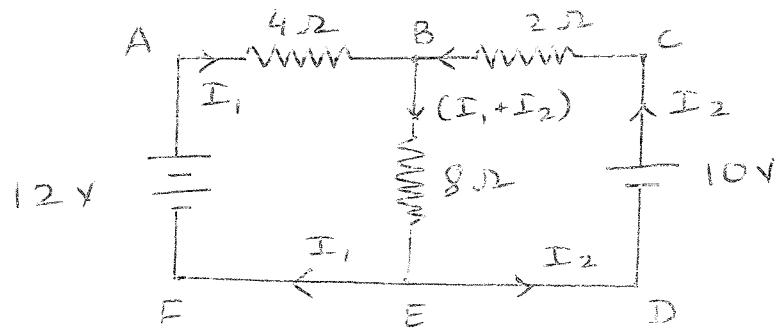
Time : 1-00 Hours]


April 2024

[Max. Marks : 25]

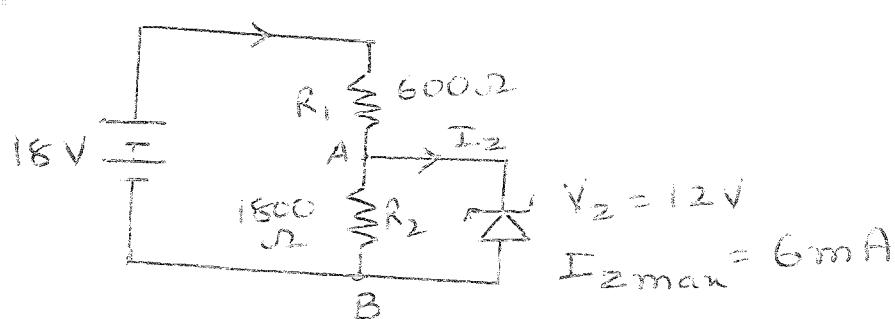
Instructions : (1) Figures to the right indicate Full Marks of the questions.

(2) Symbol used their usual meaning.


1 (a) State the Norton's theorem and explain how to nortonise a given circuit. 7

(b) Use Kirchhoff's laws to find the magnitude and direction of current flow through the 10Ω resistor in the following circuit : 3

OR


(a) Write a note on ideal constant-voltage source and ideal constant-current source. 5

(b) Using Kirchoff's laws, calculate the branch currents in the network of the following figure : 5

2 (a) Describe the construction of a zener diode and explain zener breakdown. Also explain the V/I characteristics and uses of a zener diode. 7

(b) Determine if the zener diode of the following figure is biased properly. If so, find Iz and the power dissipated by the diode : 3

OR

[P.T.O.]

2604E220-2

(a)	Describe the construction and applications of LED.	7
(b)	What is avalanche photodiode? What is its application?	3
3	Attempt any five out of six :	5
(1)	State the maximum power transfer theorem.	
(2)	While finding R_{th} , all voltage sources are removed, but not their resistances.	
(3)	Name any two applications of a thermistor.	
(4)	Draw the schematic symbol and a simple equivalent circuit for a varactor.	
(5)	A tunnel diode has a doping density about times higher compared to an ordinary junction diode.	
(6)	Write the relation between frequency and wavelength of light.	
