

Q.1 (A) Draw the circuit approximation of a section of a transmission line. [07]
 Derive an expression for input impedance of a transmission line as a function of length.
 (B) Explain with necessary equations how a section of a short circuited transmission line can be used as capacitive and inductive circuit element in high frequency (R.F.) circuits.

OR

Q.1 (A) What is Smith chart? Derive the equations of constant resistance and reactance circles of Smith chart. Discuss how Smith chart is obtained from these equations.
 (B) Explain the terms:
 (i) Reflection coefficient
 (ii) VSWR
 (iii) Quarter wave transformer

Q.2 (A) Explain the principle, structure and important properties of Yagi- Uda antenna.
 (B) Write a detailed note on: log - periodic antenna. [07]

OR

Q.2 (A) Derive radiation field equations for Hertzian dipole.
 (B) Discuss the effect of ground on antennas. [07]

Q.3 (A) Define amplitude modulation.
 Derive the expression for instantaneous voltage of amplitude modulated wave. Define amplitude modulation index (m_a).
 (B) Draw and discuss the circuit of a Balanced Modulator using JFET to generate **Double sideband suppressed carrier (DSBSC)** signal. [07]

OR

Q.3 (A) Describe **Armstrong method** of FM generation.
 (B) Draw circuit of **Foster Seeley** detector and explain the demodulation process of FM wave. List the advantage of this detector. [07]

Q.4 (A) List the various types of Pulse Modulations. Describe Pulse amplitude modulation(PAM) in detail. Draw its frequency spectrum and explain aliasing effect.
 (B) What is meant by probability of bit error in baseband transmission system? [07]
 Draw circuit of a matched filter for rectangular pulses and explain its working.

OR

Q.4 (A) Describe Binary Phase Shift Keying (BPSK). Draw its frequency spectrum. [07]

(B) What is meant by bit timing recovery? Discuss Early - Late gate circuit for [07] bit timing recovery.

Q.5 Answer in brief **Any Seven** questions from the following: (Each question is [14] of **two** mark).

- (i) Define characteristic impedance.
- (ii) What will be the reflection coefficient of a 50Ω microwave transmission line terminated in a short?
- (iii) Give two examples of multiconductor conductor transmission line.
- (iv) An antenna has a radiation resistance of 72Ω , a loss resistance of 24Ω , and a power gain of 16. Calculate its efficiency.
- (v) What is called Fraunhofer region?
- (vi) Draw radiation pattern of a parabolic reflector antenna.
- (vii) If two signals having frequencies 1000 kHz and 5 kHz are given to Balanced modulator, then what will be frequencies present at the output.
- (viii) What sampling rate would be appropriate for a telephone signal with a maximum signal frequency of 5 kHz?
- (ix) Give three reasons that explain the need of modulation.
- (x) According to Carson Rule, calculate the bandwidth of a Frequency modulated wave with modulating signal frequency (f_m) = 5 kHz and maximum frequency deviation (Δf) = 75 kHz.
- (xi) A 8-bit PCM channel is using Raised-cosine filtering with roll off factor of unity applied to the transmission facility to reduce ISI noise. What will be the $(S/N)_q$ ratio in db.
- (xii) A sinusoidal signal with a maximum peak input voltage of 5 V is applied to a PCM channel using a 8-bit code word. What will be the width of each level in mV?

*** PAPER ENDS ***