

B.Sc. Semester-5 Examination

CC 303

Mathematics

March-2024

Time : 2-30 Hours]

[Max. Marks : 70]

Instructions: 1) All questions are compulsory.
 2) Figures to the right indicate full marks of the question/sub-question.
 3) Notations used in this question paper carry their usual meaning.

Q-1 a) State and prove triangular inequality. Hence prove that, if z_1 and z_2 are complex numbers then $|z_1 + z_2| \leq |z_1| + |z_2|$. (07)
 b) Find all values of $(-8i)^{\frac{1}{3}}$. (07)

OR

Q-1 a) Suppose that $z_n = x_n + iy_n$ ($n = 1, 2, 3, \dots$) and $z = x + iy$. Then prove that (07)

$$\lim_{n \rightarrow \infty} z_n = z \Leftrightarrow \lim_{n \rightarrow \infty} x_n = x \text{ and } \lim_{n \rightarrow \infty} y_n = y.$$

 b) If $\sin(\alpha + i\beta) = x + iy$, then find x and y , and prove that (07)
 (i) $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\cosh^2 \beta} = 1$
 (ii) $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$.

Q-2 a) Prove that if a function $f(z) = u(x, y) + i v(x, y)$ is differentiable in D then (07)
 u_x, u_y, v_x, v_y exist and $u_x = v_y$ and $u_y = -v_x$ in D .
 b) Define harmonic function. Find the Harmonic conjugate of $y^3 - 3x^2y$ and (07)
 corresponding analytic function in terms of z .

OR

Q-2 a) The function f is defined as $f(z) = \begin{cases} \frac{(\bar{z})^2}{z}; & z \neq 0 \\ 0; & z = 0 \end{cases}$, then show that $f(z)$ is not (07)
 analytic at $z = 0$; even if it satisfies Cauchy-Riemann equations at the origin.
 b) If $f(z) = u(r, \theta) + i v(r, \theta)$ be an analytic function and $u = -r^3 \sin 3\theta$ then (07)
 find a function $v(r, \theta)$ and also express the function $f(z)$ in terms of z .

Q-3 a) Show that the mapping $w = \frac{1}{z}$ transforms the circles and lines into circles and lines. (07)

P.T.O

b) Prove that the magnitude and the direction of angle between the lines $y = 2x$ and $y = x - 1$ remains same under the mapping $w = f(z) = z^2$. Sketch all curves and determine corresponding directions along them. (07)

OR

Q-3 a) Prove that if $f(z)$ is analytic at z_0 and $f'(z_0) \neq 0$, then $w = f(z)$ is conformal at z_0 . (07)

b) Find the bilinear transformations which map (07)

- (i) $-1, 0, 1$ of z -plane onto $-i, 1, i$ of w -plane respectively
- (ii) $\infty, -i, 0$ of z -plane onto $0, 1, \infty$ of w -plane respectively.

Q-4 a) State and prove Bessel's inequality for the Fourier series. (07)

b) Obtain the Fourier series expansion of $f(x) = x \sin x$ in $[-\pi, \pi]$. Hence, deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$ (07)

OR

Q-4 a) State and prove Euler's formula for the Fourier coefficients. (07)

b) Find a sine series for the function $f(x) = x$ for $0 < x < \frac{\pi}{2}$ and $f(x) = 0$ for $\frac{\pi}{2} < x < \pi$. (07)

Q-5 Answer the following questions in short (Any SEVEN) (14)

- 1 Show that $|Im(1 - \bar{z} + z^2)| < 3$, when $|z| < 1$.
- 2 Prove that $|z| \leq |Re z| + |Im z|$.
- 3 Find the modulus and principal argument of the complex number $-\sqrt{3} - i$.
- 4 Is $u(x, y) = 2x(1 - y)$ harmonic?
- 5 Write the C-R equations and Laplace's equation in polar form.
- 6 Is the function $f(z) = |z|^2$ entire? Justify.
- 7 Find the critical points of the mapping $w = \frac{z^3}{3} - z$.
- 8 Find the non-conformal points of the mapping $f(z) = 2z^3 + 15z^2 - 6z + 9$.
- 9 Find the singular points of $|z|^2$ and $\frac{1}{z}$.
- 10 Obtain $\int_{-\pi}^{\pi} \cos^2 nx \, dx$, for all $n \in N$.
- 11 Obtain $\int_{-\pi}^{\pi} \cos nx \, dx$, for all $n \in N$.
- 12 True / False:
 - (i) The Fourier series of the even function contains only cosine terms.
 - (ii) The Fourier series of odd function contains only cosine terms.

— — — × — — — × — — —