

Q.1 (A) Define characteristic of a ring. Prove that the characteristic of an integral Domain is either prime number or zero. [7]

(B) In the set of all integers Z , the operations \oplus and \otimes are defined by $a \oplus b = a + b - 1$ and $a \otimes b = a + b - ab$ for all $a, b \in Z$ then show that (Z, \oplus, \otimes) is a commutative ring with unity. Is an integral domain? Is it a field? [7]

OR

Q.1 (A) Prove that a field is an integral domain. Is converse true? Justify your answer. [7]

(B) Show that the set $F = \{a + b\sqrt{2} / a, b \in Q\}$ is a field under usual addition and multiplication defined as follows.
 Addition : $(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$ and
 Multiplication: $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$. [7]

Q.2 (A) State and prove the fundamental theorem on homomorphism ~~for rings~~ [7]

(B) let R be the ring of all complex number and $R' = M_{2 \times 2}(R) = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} / a, b \in R \right\}$ be a ring w.r.t usual addition and multiplication. Define $\phi: R \rightarrow R'$ by $\phi(a+ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$; $a+ib \in R$ then Verify whether ϕ is a homomorphism or not ? Is it an Isomorphism? More over find the Kernel of ϕ . [7]

OR

Q.2 (A) Define an ideal in a ring. State and Prove the necessary and sufficient condition for a non-empty subset of a ring to be an ideal of a ring. [7]

(B) Obtain all ideals of the ring $(Z_{18}, +_{18}, \cdot_{18})$ and prepare tables for co-responding quotient rings. [7]

Q.3 (A) State and prove the division algorithm for polynomials. [7]

(B) Define irreducible polynomial, Also find all rational roots of an equation $4x^5 + x^3 + x^2 - 3x + 1 = 0$. [7]

OR

Q.3 (A) For non-zero polynomial $f, g \in D[x]$ then in usual notation prove that $[fg] = [f] + [g]$. [7]

(B) Define g.c.d of two polynomials over a field F , Using Euclid's algorithm for the polynomials $f(x) = x^3 - 2x^2 + 3x - 7$ and $g(x) = x^2 + 2$ over the field R , find g.c.d of $f(x)$ and $g(x)$. Also express it into the form $a(x)f(x) + b(x)g(x)$. [7]

Q.4 (A) Define maximal ideal. Prove that an ideal I in a commutative ring R with unity is a maximal ideal iff the quotient ring R/I is a field. [7]
 (B) Prove that the ideal $I = \langle x^3 - x - 1 \rangle$ is a maximal ideal in $\mathbb{Z}_3[x]$. [7]

OR

Q.4 (A) let R be a commutative ring with unity and I be an ideal of R then prove that R/I is an integral domain iff I is a prime ideal. [7]
 (B) For an integral domain D and the field F , the mapping $\phi: D \rightarrow F$ defined by $\phi(a) = (a, 1): \forall a \in D$ where $F = \{[a, b] / (a, b) \in S, b \neq 0\}$ then show that $D \cong F$. [7]

Q.5 Answer the following in short (ANY SEVEN). [14]

(1) Give an example of a division ring.
 (2) Is $(\mathbb{Z}_7, +_7, \cdot_7)$ integral domain ? Justify your answer.
 (3) Give an example of ring without unity but it's subring with unity.
 (4) Define Kernel of a homomorphism.
 (5) If $I = 5\mathbb{Z}$ is an ideal of the ring $R = (\mathbb{Z}, +, \cdot)$ then write down all the elements in quotient ring R/I . Also, Solve equation $(I+2) \cdot X = I+3$ for $X \in R/I$
 (6) Define principal ideal.
 (7) Find $f+g$ and fg for two polynomials $f = (2, 4, -2, 4, 1, 0, 3, 0, 0, 0, \dots) \in \mathbb{Z}[x]$ and $g = (3, 4, -1, 2, 1, 5, 0, 0, 0, \dots) \in \mathbb{Z}[x]$.
 (8) Obtain the quotient $q(x)$ and the remainder $r(x)$ on $f(x) = x^3 + 1$ dividing by $g(x) = x^2 + 3x - 5$ in $\mathbb{R}[x]$.
 (9) Define monic polynomial.
 (10) Define an extension field and give an example of it.
 (11) Find a polynomial with integer coefficients that has $\frac{1}{2}, 2$ and $-1/3$ as zeroes.
 (12) Define prime ideal and Give an example of a prime ideal.

-----x-----x-----x-----