

1. (A) Define integral domain. Prove that a finite integral domain is a field. Is the ring \mathbb{Z}_{24} an integral domain? Justify your answer. 7

(B) If n is an integer greater than 1, show that $\langle n \rangle = n\mathbb{Z}$ is a prime ideal of \mathbb{Z} if and only if n is prime. 7

OR

1. (A) Define a ring homomorphism from a ring R to a ring S . Determine all ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} . 7

(B) State and prove first isomorphism theorem for rings. 7

2. (A) Prove that the polynomial ring $F[x]$ over a field F is a principal ideal domain. 7

(B) State (without proof) Eisenstein's criterion. Discuss the irreducibility of the polynomial $1 + x + x^2 + x^3 + x^4$ over \mathbb{Q} . 7

OR

2. (A) Define unique factorization domain.
Is $\mathbb{Z}[\sqrt{-6}] = \{a + b\sqrt{-6} \mid a, b \in \mathbb{Z}\}$ a unique factorization domain? Justify your answer. 7

(B) Define Euclidean domain.
Prove that every euclidean domain is a principal ideal domain. 7

3. (A) Define splitting field of a polynomial $f(x)$ over a field F . Find the splitting field E of $x^4 + x^2 + 1$ over \mathbb{Q} . Find the degree $[E : \mathbb{Q}]$. 7

(B) Let K be a finite extension field of the field E and let E be a finite extension field of the field F . Prove that K is a finite extension field of the field F and $[K : F] = [K : E][E : F]$. 7

N497-2

OR

3. (A) If K is an algebraic extension of E and E is an algebraic extension of F , prove that K is an algebraic extension of F . 7

(B) Draw the subfield lattice of $\text{GF}(64)$. 7

4. (A) Let $F = \mathbb{Q}(\omega, \sqrt[3]{2})$. Find the Galois group $\text{Gal}(F/\mathbb{Q})$. Discuss the lattice of subgroups of $\text{Gal}(F/\mathbb{Q})$. 7

(B) Define solvable group.
Give an example of a solvable group. Justify your answer. 7

OR

4. (A) Determine the Galois group of $x^2 - 10x + 21$ over \mathbb{Q} . 7

(B) Define cyclotomic polynomial $\Phi_n(x)$. Find $\Phi_n(x)$, for $n = 1, 2, 3, 4, 5, 6$. 7

5. Attempt any seven of the following. 14

5. Attempt any seven of the following.

(1) Which of the following rings are integral domains?

(A) \mathbb{Z} (B) \mathbb{Z}_{30} (C) \mathbb{Z}_{19} (D) $\mathbb{Z} \oplus \mathbb{Z}$

(2) Which of the following are the zero divisors of \mathbb{Z}_{20} ?

(A) 2 (B) 9 (C) 3 (D) 5

(3) The number of the maximal ideals of the ring \mathbb{Z}_{12} is

(A) 1 (B) 2 (C) 3 (D) 4

(4) The number of zeros of $x^2 + 3x + 2$ in \mathbb{Z}_5 is

(A) 2 (B) 3 (C) 1 (D) 4

(5) Which of the following polynomials are irreducible over \mathbb{Z}_3 ?

(A) $x^2 + x$ (C) $x^3 + 2$
(B) $x^3 + 2x + 1$ (D) $x^2 + x + 2$

(6) The number of units of the ring of Gaussian integers $\mathbb{Z}[i]$ is
 (A) 1 (B) 2 (C) 3 (D) 4

(7) The degree of the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} is
 (A) 2 (C) 8
 (B) 4 (D) 16

(8) $[GF(729) : GF(27)] = \underline{\hspace{2cm}}$
 (A) 2 (B) 3 (C) 4 (D) 9

(9) Let p be a prime number. As a group under multiplication, the set of nonzero elements of $GF(p^n)$ is isomorphic to
 (A) \mathbb{Z}_{p^n-1} (B) \mathbb{Z}_{p^n+1} (C) \mathbb{Z}_{p^n} (D) $\mathbb{Z}_{p^{n-1}}$

(10) Which of the following statements is true?
 (A) $\sqrt[3]{2}$ is constructible.
 (B) $\sqrt{2} + \sqrt{3}$ is not constructible.
 (C) π is constructible.
 (D) $\sqrt{5}$ is constructible.

(11) The order of the Galois group of the field $\mathbb{Q}(\sqrt[4]{2}, i)$ over $\mathbb{Q}(i)$ is
 (A) 16 (B) 8 (C) 4 (D) 2

(12) The Galois group $\text{Gal}(\mathbb{Q}(\sqrt{3} + \sqrt{5})/\mathbb{Q})$ is isomorphic to
 (A) $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ (B) \mathbb{Z}_2 (C) \mathbb{Z}_4 (D) $\mathbb{Z}_2 \oplus \mathbb{Z}_4$