2111E737

Candidate's Seat No:

M.Sc Sem-3 Examination

502

Statistics

Time : 2-30 Hours]

November-2024

[Max. Marks: 70

Note: Attempt all questions.

0.1

(i) Discuss general structure of block designs.

[7]

(ii) In usual notations for a block design, show that b + rank(C) = v + rank(D).

[7]

- (i) Show that an incomplete block design is connected if and only if the rank of its C-matrix is exactly v - 1.
- (ii) Show that a connected design is balanced if and only if all the non-zero characteristic roots of C are equal. [7]

Q.2

- (i) Define BIBD (v,b,r,k,λ) and show that for BIBD $r(k-1) = \lambda(v-1)$. [7]
- (ii) Show that for a resolvable BIBD (v, b, r, k, λ) $b \ge v + r 1$. [7]

(i) In usual notations, show that in intrablock analysis of BIBD

[7]

 $Q_i = T_i - \sum_{i=1}^b \frac{n_{ij} B_j}{k}.$

(ii) Define BIBD (v, b, r, k, λ) and show that for BIBD $b \ge v$.

[7]

0.3

(i) Define association scheme with m classes. Describe relations between the parameters of PBIB designs. [7]

OR

(ii) What do you understand by fractional replication? Construct a ½ replication of a 26-design.

[7]

(i) Define a PBIBD with m associate classes and show that in a PBIBD

[7]

(A) $\sum_{i=1}^{m} n_i = v - 1$ (B) $\sum_{i=1}^{m} n_i \lambda_i = r(k-1)$.

(ii) Construct a 2⁵ factorial design in blocks of 8 plots confounding the interactions ACD and BDE. Determine the other interactions which are also confounded. [7]

Q.4

- (i) Construct partially balanced incomplete block design using double triangle.
- (ii) Define Galois field and construct BIBD with parameters v = 7, b = 7, r = 3, k = 3, $\lambda = 1$. [7]

(i) Define mutually orthogonal Latin squares(MOLS). Explain, how will you obtain a BIBD [7]

(ii) Construct BIBD with parameters v = 15, b = 35, r = 7, k = 3, $\lambda = 1$. [7]

Q. 5 Answer any so (i) Latin square des]	14]
(A) orthogonal	(B) connected	(C) both (A) an	d (B)	(D) none of the above	
(ii) In a connected design the diagonal elements of the C-matrix are all positive.(A)True(B) False					
(iii) For an incomplete block design, $CE_{v,1} =?$					
(A) $0_{v,1}$		(C) $r1_{v,1}$	(D) l	$\mathbf{c1}_{\mathrm{v,1}}$	
(iv) Define symmetric BIBD.					
(v) Define affine resolvable design.					
(vi) In usual notations, in intrablock analysis for BIBD , treatment sum of squares (adjusted) is given by					
$(A) \sum_{i=1}^{\nu} \frac{Q_i^2}{rE}$	(B) $\sum_{i=1}^{\nu} \frac{Q_i^2}{\lambda E}$	(C) $\sum_{i=1}^{v} \frac{Q_i^2}{bE}$	(D) $\sum_{i=1}^{\nu}$	$\frac{Q_i^2}{2bE}$	
(vii) In usual notations a group-divisible design is said to be semiregular if					
(viii) In a PBIBD v (A) 0	with $v = 6$, $r = 2$, k (B) 4	= 4, b = 3, m = 3, n (C) 1	$= 2, \lambda_1 = (D) 2$	$=2, \lambda_2=1$, value of P_{22}^2 is	
(ix) Give one disadvantage of confounding.					
(x) Define PG (n, s)	ı .				
(xi) Find primitive element of GF(5).					
(xii) Give incidence matrix of BIBD $v = 5$, $b = 10$, $r = 6$, $k = 3$, $\lambda = 3$.					