2103N1685

Candidate's	Seat No	:

M.Sc. Semester-3 Examination

502

Mathematics

Time: 2-30 Hours

March-2024

[Max. Marks: 70

- 1. (A) State and prove one-step subgroup test. Let G be an Abelian group with identity e. Is $H = \{x \in G \mid x^2 = e\}$ a subgroup of G? Explain.
 - (B) Define center of a group G. Find the center of the Dihedral group D_n . 7

OR

- 1. (A) Let a be an element of order n in a group and let k be a positive integer. Prove that $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = \frac{n}{\gcd(n,k)}$. 7
 - (B) Determine the subgroup lattice for the group Z_{40} .

7

- 2. (A) Suppose that ϕ is an isomorphism from a group G onto a group \overline{G} . Prove the following: 7
 - (i) G is Abelian if and only if \overline{G} is Abelian.
 - (ii) If \overline{K} is a subgroup of \overline{G} , then $\phi^{-1}(\overline{K})=\{g\in G\mid \phi(g)\in \overline{K}\}$ is a subgroup of G.
 - (B) Determine the number of elements in A_5 of order 2, 3, and 5.

7

OR

- 2. (A) Let H and K be finite subgroups of a group G. Prove that $|HK| = \frac{|H|K|}{|H \cap K|}$. 7
 - (B) Let G and H be finite cyclic groups. Prove that $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime. 7
- 3. (A) For any group G, prove that G/Z(G) is isomorphic to Inn(G). 7
 - (B) Show that the mapping ϕ from \mathbb{C}^* to \mathbb{C}^* given by $\phi(x) = x^4$ is a homomorphism. Find Ker (ϕ) and $\phi^{-1}(2)$. 7

OR

3.	3. (A) State and prove first isomorphism theorem.			7		
	(B) Find all Abelian groups (up to isomorphism) of order 360.			7		
4.	. (A) Define conjugacy class of an element a in a group G . Calculate all conjugaces for the symmetric group S_3 and verify the class equation.					
	(B)	Prove that a group	of order 99 is Abelia	an.	7	
			OR	t.		
4.	4. (A) Prove that an integer of the form $2 \cdot n$, where n is an odd number greater than is not the order of a simple group.					
	(B)	Prove that there is	no simple group of o	order 216.	7	
5.	Att	empt any seven o	f the following.		14	
	(1)	In the dihedral grou	p D_4 , if $X^2 = R_0$, th	$en X = \underline{\hspace{1cm}}.$		
		(A) V	(B) R_{180}	(C) D	(D) R_{90}	
(2) Consider the group $\{5, 15, 25, 35\}$ under multiplication modulo 40. What is multiplicative inverse of 5?						
	,	(A) 15	(B) 25	(C) 35	(D) 5	
(3) If a cyclic group has an element of infinite order, then how many element order does it have?					ny elements of finite	
	((A) 1		(C) 3		
	((B) 2		(D) infinitely many		
(4) Let a belong to a group and $ a = 100$. Then $ a^{98} $ is						
	((A) 50	(B) 25	(C) 20	(D) 10	
(5) Which of the following permutations are even?						
		(A) (1 2 5) (B) (1 2)(1 3 4)(1 5	2)	(C) (1 2 3 4) (D) (2 3 5 9 4)		

(6)	The number of automorphisms of the group \mathbb{Z}_{20} is						
	(A) 10	(B) 15	(C) 4	(D) 8			
(7)	Suppose H and K are subgroups of a group G . If $ H =12$ and $ K =35$, then $ H\cap K $ is						
	(A) 12	(B) 5	(C) 1	(D) 35			
(8)	8) What is the order of the factor group $\mathbb{Z}_{60}/\langle 15 \rangle$?						
	(A) 10	(B) 15	(C) 4	(D) 3			
(9)	9) If ϕ is homomorphism from \mathbb{Z}_{30} onto a group of order 5, then $ \operatorname{Ker} \phi $ is						
	(A) 2	(B) 6	(C) 5	(D) 3			
(10)	 (a) (D, V) (b) (B) (D, D') (c) (D, R₀, R₉₀, D') (d) (D, V) (e) (D, R₀, R₉₀, D') (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)						
(11)) If G is a group of order 1250, then G has a Sylow 5—subgroup of order						
	(A) 5	(B) 25	(C) 125	(D) 625			
(12)) Which of the following groups are simple?						
	(A) S_4	(B) \mathbb{Z}_{31}	(C) \mathbb{Z}_{19}	(D) A_5			