2103E1261

Candidate's Seat No:

B.Sc. Semester-5 Examination

CC 301

Mathematics March-2024

Max. Marks: 70

[7]

[7]

[7]

[7]

[7]

- n: (i) All the questions are compulsory and carry equal marks.
 - (ii) Notations are usual everywhere.

2-30 Hours

(iii) The right hand side figures indicate marks of the question/sub-question.

$$T: U \to V$$
 is linear map, $v_0 \in R(T)$ and if $T(u) = \bar{0}_V$ has only a trivial solution $= \bar{0}_U$ then prove that the operator equation $T(u) = v_0$ has a unique solution. [7]

that the 2 \times 2 determinant function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$(y_1, y_2) = x_1 y_2 - x_2 y_1$$
 for $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ is a bilinear form.

nd Prove the Dual Basis Existence Theorem. [7] the dual basis of the basis $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ for the vector space V_3 .

[7]

ove that an orthogonal set of nonzero vectors is linearly independent. or $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ the map < , > is defined as

$= x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_2$ then show that <,> is an inner product on R^2 . [7]

 $\{(1, 1) (1, 2)\}$ in order to get the orthonormal basis for V_2 .

and Prove the Cauchy-Schwarz inequality. the Gram-Schmidt orthogonalization process to the basis

 $\neq j$, $\alpha\!\in\!R$ and if $\textit{det}:V^n\to\!R$ is a function satisfying $\,$ the expected properties

the determinant then prove the followings:

- i) $det(v_1, v_2, ..., v_i, ..., v_j, ..., v_n) = det(v_1, v_2, ..., v_i + \alpha v_j, ..., v_j, ..., v_n)$
- (ii) $det(v_1, v_2, ..., v_i, ..., v_j, ..., v_n) = -det(v_1, v_2, ..., v_j, ..., v_i, ..., v_n).$

If
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 0 & 6 & 7 \\ 0 & 8 & 9 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 then compute $detA$ without expansion.

[7]

OR

 ϵ the formula of finding area of a parallelogram in terms of a 2 \times 2 determinant. [7]

he Cramer's rule to solve : 2x-3y+z=1

$$x + y - z = 0$$

$$x-2y+z=-1$$
.

[7]

Express the characteristic equation of 2×2 matrix in terms of its trace and determinant.

. Iso prove that a 2×2 real and symmetric matrix has only real eigen values. [7]

$$\text{malize the matrix A} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

[7]

OR

and Prove the Caley-Hamilton's Theorem.

[7]

fy the quadric in R³ given by $f(x, y, z) = 4xz + 4y^2 + 8y + 8 = 0$.

[7]

npt any SEVEN of the followings in Short:

[14]

efine a linear functional and the Dual Space of a vector space.

- efine homogeneous and nonhomogeneous operator equations.
- efine a Bilinear form and an Annihilator.
- efine a Euclidian Space and a Unitary space.
- efine orthogonal projection of a vector along a nonzero vector.
- efine an orthogonal linear map and orthogonal complement of a subspace of ips V. ate any two expected properties of the determinant function.
- tate the Laplace expansion for finding the value of a determinant.

and
$$detA$$
 without expansion if $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$

efine an eigen value and eigen vector of an endomorphism.

- efine a symmetric linear map and a quadric.
- ite the spectral theorem.