2007E579

|--|

M.C.A. Sem.-3 (A.T.K.T.) Examination

Computer Vision

Time: 3-00 Hours] July-2024

[Max. Marks: 50

SECTION I Q1. Define the following (ANY SIX): [09] i. Image ii. Quantisation iii. Spatial resolution iv. Segmentation ٧. Local features vi. Histogram vii. Edge viii. Gradient Q2. Give mathematical representation of image. How it is represented in spatial domain? [80] Explain various point processing operations on image with their application areas OR Q2. Explain in detail with example [80] Contrast streching ii. Bit plane slicing iii. Gray level slicing Q3. Explain effects of histogram equalisation. Explain the mathematics behind it [80] OR Q3. Explain the representation of image in frequency domain. What is Fourier transform? [08] What is advantage of its representation? Explain steps of image enhancement in frequency domain SECTION II What is convolution? Explain image smoothening through convolution. What are the [09] Q4. applications? Write filters/kernel for: i. Mean filter ii. Median filter iii. Min and Max filter What are different type of edges? Give difference between Laplacian and Gradient [80] Q5.

operators. Write filters for Sobel and Laplacian filters

(P.T.O)

E579-2

OR

Q5.	Give difference between global and local features. Explain algorithm for extraction of	[80]
	local features through HOG	[00]
Q6.	Why corners are considered to be appropriate features? Explain Harris corner detector	[80]
	algorithm	
	OR	
Q6.	What are applications of segmentation? Explain region based, edge based and clustering	[08]
	based approaches in detail.	