2004N353

Candidate's Seat No:

[Max. Marks: 70

M.Sc Semester-2 Examination

AMS 410 Mathematical Methods April 2024

Time: 2-30 Hours]

A STATE OF THE STA

Instructions: All questions are compulsory. Use of non-programmable scientific calculator is allowed.

- Q.1 (a) Using modified Euler's method, determine the value of y when x = 1.1, correct up to (07) four decimal places by taking h = 0.05. Given that y(1) = 1 and $\frac{dy}{dx} = y^2 \frac{y}{x}$.
 - (b) Determine the value of y(2) using Milne's predictor corrector method for $\frac{dy}{dx} = \frac{x+y}{2}$ (37) and given that y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968.
 - Solve the following differential equation using Heun's method. $\frac{dy}{dx} = xy \text{ with } y(1) = 2 \text{ for } x = 1.4 \text{ by taking } h = 0.2, \text{ correct up to four decimal places.}$
 - (b) The velocity v of a particle at distance s from a point on its linear path is given by the following table:

s(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
v(m/sec)	16	19	21	22	20	17	13	in the second se	9

Estimate the time taken by the particle to traverse the distance of 20 meter, using Simpson's $\frac{3}{8}$ rule.

- Q.2 (a) Find the inverse Laplace transform of $\frac{3s-8}{4s^2+25}$
 - (b) Using the Laplace transform, find the solution of the initial value problem y'' + y = 0, y(0) = 1, y'(0) = -1

OR

(a) Obtain the Laplace transform of $t^2 e^{-2t} \cos t$.

(b) Find the h(t) by the convolution theorem for $H(s) = \frac{1}{s(s^2+4)}$. (97)

- Q.3 (a) Find the Fourier series of $f(x) = x^2, -2 < x < 2$. Also, Deduce that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$
 - Solve using Fourier sin transform $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to conditions (i) u(x,t) is bounded, (ii) u(0,t) = 0, t > 0 (ii) $u(x,0) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$.

 OR
 - (a) Find the Fourier cosine integral of the function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
 - (b) Find the half range Fourier cosine series for $f(x) = \sin x$, $x \in (0, \pi)$. Also derive that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$

(07)

N353 -2

(a) Find and graph all sixth roots of unity in the complex plane.

(07)

(07)

Find the analytic function w = u + iv whose imaginary part is given by $v = e^{x}(x \sin y + y \cos y)$.

- (a) Find the image of 2x + y 3 = 0 under the transformation w = z + 2i. (07)
- (b) Show that the transformation $w = \frac{1}{z}$ maps a circle in the z-plane into a circle or into a straight line in the w-plane. (07)
- 0.5 Attempt any **SEVEN** out of **TWELVE**:

(14)

- (1) Define: Trapezoidal rule
- (2) Using Euler's method. $\tilde{n}_{1} = 1 - 2xy, \quad y(0) = 0 \text{ with } h = 0.2.$
- (3) Define: An Initial Value Problem
- (4) Define: Unit Step Function
- (5) Find the Laplace transform of sinh at.
- (6) Define: Second Shifting Theorem
- (7) Find the Fourier transform of e^{3x} .
- (8) For $f(x) = x\sin x$, find the Fourier coefficient a_5 .
- (9) Define periodic function. Give an example of it.
- (10) Find the pole and its order of the function $f(z) = \frac{\sin z}{z^4}$.
- (11) Identify the type of singularities of the function $f(z) = e^{\frac{1}{z-1}}$.
- (12) Define: Conformal mappings. At which points is the mapping $w = z^2 + \frac{1}{z^2}$ not conformal?
