2003N1663

Candidate's Seat N	No:
--------------------	-----

M.Sc. Semester-3 Examination

501

Mathematics

Time: 2-30 Hours

March-2024

[Max. Marks: 70

1. (A) Define linear space. Prove that C[0,1] is a linear space.

7

(B) Let a linear space L be the sum of two subspaces M and N, so that L = M + N. Then prove that $L = M \oplus N$ if and only if $M \cap N = \{0\}$.

OR

1. (A) Define linear space. Prove that l_{∞} is a linear space.

7

- (B) Define linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$. Give two linear transformations T and S on \mathbb{R}^2 such that TS = 0 but $ST \neq 0$.
- 2. (A) Define normed linear space. Draw the open unit ball B(0,1) in \mathbb{R}^2 with respect to the norms $||\cdot||_1$ and $||\cdot||_2$.
 - (B) If $(N, ||\cdot||)$ is a normed linear space, show that the norm function $||\cdot||: N \to \mathbb{R}$ is continuous.

7

OR

- 2. (A) Define normed linear space. Show that \mathbb{R}^n is a normed linear space with the norm $||\cdot||_1$.
 - (B) If $T:N\to N'$ is a linear continuous transformation, prove that there is $k\geq 0$ such that $||T(x)||\leq k||x||$, for all $x\in N$.
- 3. (A) If x is a non-zero vector in N, prove that there is a functional f in N^* such that f(x) = ||x|| and ||f|| = 1.
 - (B) Write a short note on the natural imbedding.

7

OR

3. (A) For a normed linear space N, what is its conjugate N^* ? State (without proof) Halm-Banach theorem.

7

(B) Consider the natural imbedding $x \to F_x$ form N to N^{**} . Show that it is linear and norm-preserving.

4. (A) Define Hilbert space. Give an example	e of a Hilbert space.	7
(B) For $T_1, T_2 \in \beta(N)$, Show that $(T_1T_2)^* = T_2^*T_1^*$.		
	OR	
4. (A) Let $T \in \beta(N)$, define its conjugate T^* Show that $(T_1 + T_2)^* = T_1^* + T_2^*$.	$\in \beta(N^*).$	7
(B) Let H be a Hilbert space and $S \subset H$ Prove that S^{\perp} is a closed linear subsap		complement S^{\perp} of S .
5. Attempt any SEVEN of the following	:	14
(1) What is the dimension of the linear spa	ace \mathbb{R} over \mathbb{Q} ?	
(A) 1 (B) 2	(C) 3	(D) infinite
(2) What is the dimension of the linear spa	ace \mathbb{C} over \mathbb{R} ?	
(A) 1 (B) 2	(C) n(D) infinite	
(3) Which of the following is not a Banach	space (in its usual norm)?
(A) l_{∞} (B) \mathbb{C}	(C) $P[0,1]$	(D) $C[a,b]$
(4) The norm function $ \cdot : \mathbb{R} \to \mathbb{R}$ define	d by $ x = x $ is	
(A) bounded(B) differentiable	(C) uniformly continuous (D) discontinuous	
(5) How many linear subspaces does the lin	ear space \mathbb{R}^2 have?	
(A) 1 (B) 2	(C) 4	(D) infinite
(6) Which of the following subsets is not a	subspace of \mathbb{R}^3 ?	
(A) $\{(x, y, z)/x + y + z = 0\}$ (B) $\{(x, y, z)/x + y + z = 1\}$	(C) $\{(x, y, z)/x + y + z = 2\}$ (D) $\{(x, y, z)/x + y = 1\}$	
(7) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x,y) =$	= (y+2, x+3) then	
(A) T is not linear(B) T is linear but not continuous	(C) T is linear and o(D) T is a functiona	

N1663-3

(8)	Which of the following is a basis of linear space \mathbb{R}^3 ?			
	(A) {(1,1,1,),(2,2,2),(3,3,3)} (B) {(1,2,3),(4,4,5),(6,7,8),(6,4,2)}		$\{(0,0,0),(1,0,0),(0,1,0)\}$ none of these	
(9)	What is the dimension of \mathbb{C}^n over \mathbb{R} ?			
	(A) 2 (B) n	(C) (D)	$\frac{2n}{n/2}$	
(10)	Which of the following is false?			
	(A) $(\mathbb{R}^n)^* = \mathbb{R}^n$ (B) $(l_2)^* = l_2$. /	$C[0,1]^* = C[a,b]$ none	
	Which of the following space is a Banach space (A) $A = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 = 1\}$ (B) $B = \{(x,y) \in \mathbb{R}^2/x + y = 0\}$ (C) $C = \{(x,y) \in \mathbb{R}^2/x + y = 1\}$ (D) none	pace?		
(12)	Which of the following (in its usual norm) is a Hilbert space?			
	(A) \mathbb{R}^2 (B) $P[a, b]$	(C) (D)	l_{∞} none of these	