First B.C.A. Sem.-1 Examination

CC-104

Fund of Mathematical Concepts

Time: 2-30 Hours

October-2024

[Max. Marks: 70

7

7

7

7

7

7

7

7

7

- A Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with subsets $A = \{3, 5, 7, 9\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{2, 4, 6, 8\}$. Using above informatin find: (a) $(A \cup B \cup C)'$ (b) $(A \cap B) - (A \cup C)$
 - B Let $A = \{1, 2, 5, 6, 7\}$ and $B = \{2, 4, 7, 8\}$ then,

(I) Find A \triangle B and B \triangle A.

Let $f: A \triangle B \rightarrow B \triangle A$, defined by f(x) = x, then show that f is one-one function (II)using Venn diagram.

A Let A = {0, 1, 2, 3} and a function f: A \rightarrow R defined by f(x) = $\frac{1-x}{1+x}$ then answer the following questions.

(I) Find $A \cap R_f$ (Range of f)

Show that $f(x) - f\left(\frac{1}{x}\right) = 2f(x)$

B Let $f(x) = \frac{x-1}{x+1}$. Then find f(x+1) - f(x-1), for x > 0.

- 2 A Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 3 & 4 & 1 \end{bmatrix}$. Then find the inverse of A if it exists. Also find the A+A^T. 7
 - B If $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, then verify $adjAB = adjA \cdot adjB$.

A Solve the following system using Cramer's Rule:

x + 2y + 3z = 62x + 4y + z = 73x + 2y + 9z = 14

Show the following matrix as the sum of symmetric and skew - symmetric matrices.

 $A = \begin{bmatrix} 2 & -2 & -1 \\ 0 & 4 & 1 \\ 1 & 3 & 1 \end{bmatrix}$

A Let two lines $l_1: x - 2y + 3 = 0$ and $l_2: 2x - 3y + 4 = 0$.

Find the equation of a line passing through the intersection of l₁ and l₂ and having slope $\frac{2}{3}$.

- Find the equation of a line passing through the intersection of l₁ and l₂ and parallel to a line joining (1, 1) and (0, -1).
- Find the equation of a line pasing through two points (2,3) and (1,2). Also find the sloop of that line.

A Find the equations of two lines passing through (2, -1) and making angle 45° with the line 7 6x + 5y - 1 = 0. Also show that these two lines are perpendicular to each other

Find the value of k, if the distance between the points (3, k) and (4, 1) is $\sqrt{10}$.

P.T.O.

7

7

7

4	A	Let $y = \log(e^{x+1})$, then find $\frac{dy}{dx}$ using	chain rul	e.	
	В				
	A.D	Find $\int (2x+3)^6 dx$.	OR		
		dv			
		Let $y = \sin(2x + 3)$, then find $\frac{dy}{dx}$ using	g chain r	ıle.	,
	B	Find $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.			
		νχ			
_					
5	Attempt any seven out of twelve.				14
	1.	LetA = $\{3, 5\}$ and B = $\{1, 4\}$, then n(A		4	
		(a) 2 (c) 6	(b)		
	2.	If $n(A) = 3$, then power set of A has _	(d)	None of these	
	Æ s	(a) 8	eieme (b)	6	
		(c) 9		None of these	
	3.	The range of a function $f: \mathbb{N} \to \mathbb{Z}$, $f(x) = \mathbb{C}$	= x - 1 is	THORE OF GIODE	
	-	(a) N	(b)		
		(c) Q	` '	None of these	
	4.	Let a function $f: A \subseteq Z \to Z$, $f(x) = x $			
		(a) N	(b)	Z	•
		(c) $N \cup \{0\}$		None of these	
	5.	The rank of a matrix with $a_{ij} = 1$ for a	ill i and j i	S	
		(a) 1	(b)	2	
		(c) 3	(d)	None of these	
	6.	A square matrix A is a null matrix if.	0.5		
		(a) $a_{ij} = 0$ for all i and j		$a_{ij} = 0$ for all $i \neq j$	
		(c) $a_{ij} = 0$ for all $i = j$ only	(d)	None of these	
	7.	AThe determinant of an identity matr			
		(a) 1	(b)	0	
		(c) -1	(d)	None of these	
	8.	The slope of a line $9x - 3y + 2 = 0$ is			
		(a) 1/3 (c) 2	(b)		
	9.	Angle between two lines $x = 1$ and $y = 1$		None of these	
	プ。	(a) 0°		45°	
		(c) 90°	• •	None of these	
	10. Two lines are parallel if the relation between their slopes is				
	100	(a) $m_1 \cdot m_2 = 1$		$m_1 \cdot m_2 = -1$	
		(c) $m_1 = m_2$		None of these	
	11.	as $n \to \infty$, $2n \to $	(47)		
		(a) ∞	(b)	0	
		(c) 1	1 1	None of these	
	12.	$\int 3.14 dx = $			
		J		_	
		(a) $2x + c$		5x + c	
		(c) 0	(d)	None of these	