1804N243

Candidate's	Seat No	:
-------------	---------	---

M.Sc Semester-2 Examination April -2024 Mathematics MAT408 Real Analysis

Time: 2.30 Hours Marks: 70

- 1. (A) State and prove Luzin's theorem.
 - (B) Find the Bernstein polynomial $B_3(x)$ for $f(x) = \sin(\pi x)$ defined on [0, 1].

OR

- 1. (A) Show that there is no polynomial p(x) defined on E = [-1, 1] such that $mE(p(x) \neq |x|) < \frac{1}{3}$.
 - (B) Define the convergence in measure. If a sequence (f_n) converges in measure to two functions f and g on E then prove that f = g a.e. on E.
- 2. (A) Prove that C[a,b] is a dense subset of the space $(L_2[a,b],||\cdot||_2)$.
 - (B) By an example, show that if $f_n(x) \to f(x)$ a.e. then it is not necessary that $f_n(x) \to f(x)$ in the mean of order p.

OR

- 2. (A) Give a sequence (f_n) such $f_n(x) \to f(x)$ in the mean of order p but (f_n) does not converge to f pointwise everywhere. Justify.
 - (B) Prove or disprove that C[0,1] is a closed linear subspace of space $(L_p[0,1],||\cdot||_p)$. 7
- 3. (A) Let $f:[a,b]\to\mathbb{R}$ be increasing. Then prove that f' is measurable on [a,b] and $\int_a^b f'(x)dx \leq f(b)-f(a)$.
 - (B) Give an example of a uniformly continuous function on [0,1] that is not absolutely continuous on [0,1]. Explain.

OR

- 3. (A) If $f:[a,b]\to\mathbb{R}$ is of finite variation then prove that f can be expressed as a sum of two monotone functions.
 - (B) Give an example of a continuous function on [0,1] that is not of finite variation. Explain.
- 4. (A) Prove that $f \in C^1[a, b]$ if and only if f is an indefinite integral of some continuous function on [a, b] (in the sense of Riemann).
 - (B) Find the Fourier series for function f defined on $[-\pi, \pi]$ by f(x) = x.

7

N243 - 2 OR

7

7

4. (A) Find the Fourier series for function f defined on $[-\pi,\pi]$ by f(x)=|x|.

(B) Give an example of $f \in C^2[0,1]$ such that $f \notin C^3[0,1]$. Explain

5.	Atı	tempt any SEVEN	of the following:		14		
	(1)	(1) Consider $f:[0,1]\to\mathbb{R}$ defined by $f(x)=\sqrt{x}$. Then which of the following statem are true?					
		(A) f is continuous(B) f is of finite variation		(C) f is absolutely continuous(D) f is Lipschitz continuous			
	(2) What is the least value of $k > 0$ such the			at $ \sin^2 x - \sin^2 y \le k x - y $?			
		(A) $\frac{1}{2}$	(B) 1	(C) $\frac{3}{2}$	(D) 2		
	(3) The L_2 norm of $f(x) = \sin x$ (defined on $[-\pi, \pi]$) is						
		(A) 0	(B) 1	(C) $\sqrt{\pi}$	(D) $\sqrt{2\pi}$		
	(4)	(4) What is the conjugate index of $p = 6$?					
		(A) $\frac{1}{6}$ (B) $\frac{6}{5}$		(C) $\frac{5}{6}$ (D) $\frac{-1}{6}$			
(5) Find $ x _2$, where $x = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{16},) \in l_2$.							
		(A) 1	(B) $\frac{4}{3}$	(C) $\sqrt{\frac{4}{3}}$	(D) none of these		
	(6)	The sequence $f_n(x) = \frac{x^n}{1+x^n}$ over the interval $[0,2]$					
		(A) converges unifor	mly	(B) does not con	nverge uniformly		
	(7)	Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=\sin\frac{1}{x}$, when $x\neq 0$ and $f(0)=1$. What is the total variation of f on $[0,1]$?					
		(A) 0 (B) 1		(C) 2π (D) none of the	above		
	(8)	Suppose $f(x)$ is an even function in $L_1[-\pi, \pi]$. Then it follows that the Fourier coefficients					
		(A) $a_k = 0$ for all k (B) $a_k + b_k = 0$ for a		(C) $b_k = 0$ for all (D) $a_k - b_k = 0$			

N243-3

(9)	Which of the following statements are true for the Cantor function θ on [0, 1]?				
	(A) θ is uniformly continuous	(C) θ is of finite var.	iation		
	(B) θ is Lipschitz continuous	(D) θ is absolutely of	continuous		
(10)	Which of the following sequences belong to the space l_2 ?				
	(A) (1,0,1,0,1,0,1,0,)	(C) $(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$)		
	(B) $(\log 1, \log 2, \log 3, \log 4)$	(D) $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$			
(11)	Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function uniformly continuous?	. Which of the follow	ving imply that it is		
	(A) f is 2π - periodic	(C) f is absolutely of	continuous		
	(B) f is differentiable and f' is bounded	(D) none of the above	<i>y</i> e		
(12)	The derivative of the Cantor θ is equal to zero on a set of measure				
	(A) 0 (B) 1	(C) $\frac{1}{2}$	(D) 2		