1604N200

Candidate's	Seat	No	*
-------------	------	----	---

M.Sc. Sem. II Examination April-2024 Mathematics MAT407 Metric Spaces

Time: 2.30 Hours Max. Marks: 70

- 1. (A) Define a metric d on a non-empty set X. Let (X, d_1) and (Y, d_2) be metric spaces. Does $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$ define a metric on the product set $X \times Y$? Justify your answer.
 - (B) Define an open ball B(x,r) in the metric space (X,d). Define an open set in the metric space (X,d). Is the set $U=\{(x,y)\in\mathbb{R}^2:x>0,\ y>0\}$ open in \mathbb{R}^2 ? Explain.

OR

- 1. (A) Let (X, d) be any metric space. Show that there exists a bounded metric on X which is equivalent to d.
 - (B) Let X be a metric space. Show that arbitrary union of open sets is open. Show by means of an example that the arbitrary intersection of open sets need not be open.
- 2. (A) Let $x_k = (x_{k1}, x_{k2}, \dots, x_{kn}) \in \mathbb{R}^n$. Show that (x_k) converges to $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ if and only if $x_{ki} \to x_i$ as $k \to \infty$ for each i.
 - (B) Let X be a metric space and let E be a subset of X. Define a limit point of E. Show that a point x is a limit point of E if and only if there exists a sequence (x_n) in E such that $x_n \to x$.

OR

- 2. (A) State and prove Bolzano Weierstrass theorem.
 - (B) Define Cauchy sequence in a metric space. Prove that any Cauchy sequence in a metric space is bounded.

7

N200-2

- 3. (A) Let (X, d_1) and (Y, d_2) be two metric spaces. Consider the metric space $(X \times Y, d)$, where d is the product metric. Show that projections P_X and P_Y are continuous.
 - (B) Let X, Y be metric spaces. Show that a map $f: X \to Y$ is continuous if and only if for every open set $V \subset Y$, its inverse image $f^{-1}(V)$ is open in X.

OR

3. (A) State and prove Urysohn's lemma.

7

- (B) Define homeomorphism. Show that any two closed and bounded intervals in $\mathbb R$ are homeomorphic.
- 4. (A) Show that any compact subset of a metric space is closed and bounded. 7
 - (B) Is the set $A = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ compact in \mathbb{R}^2 ? Justify your answer. 7

OR

- 4. (A) Define: A connected metric space X. Let A be a connected subset of metric space X. Let $A \subset B \subset \overline{A}$. Show that B is connected.
 - (B) Let X and Y be connected metric spaces. Prove that the product space $X \times Y$ is connected.
- 5. Attempt any seven of the following.

14

- (1) Let $X = \mathbb{R}$. Let $d_1(x,y) = (x-y)^2$ and $d_2(x,y) = \sqrt{|x-y|}$. Then
 - (A) d_1 and d_2 are not metrics on \mathbb{R} .
 - (B) d_1 and d_2 are metrics on \mathbb{R} .
 - (C) d_1 is metric on \mathbb{R} but d_2 is not metric on \mathbb{R} .
 - (D) d_2 is metric on \mathbb{R} but d_1 is not metric on \mathbb{R} .
- (2) Let (\mathbb{R}, d) be the discrete metric space. Then the interior of \mathbb{Q} is
 - (A) empty set

(C) R

(B) Q

(D) $\mathbb{R} \setminus \mathbb{Q}$

(3)	Which of the following statements are t	rue?			
	(A) Any finite subset of a metric space is open.				
	(B) The set of integers \mathbb{Z} is closed in \mathbb{R} .				
	(C) If in a metric space we have $B(x, r)$ and $r = s$.	=B(y,s), then it always mean that $x=y$			
	(D) In a normed linear space $B(x,r)$ is	convex.			
(4)) Which of the following sets are open dense subset of \mathbb{R} ?				
	$(A) \mathbb{Q}$	(C) $\mathbb{R} \setminus \{1, 2, 3, 4, 5\}$			
	(B) $\mathbb{R} \setminus \mathbb{Z}$	(D) $\mathbb{R} \setminus \mathbb{Q}$			
(5)	5) The closure of the set $E = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q}\}$ is				
	(A) \mathbb{R}^2	(C) ϕ			
	(B) E	(D) $\{(x,y) \in \mathbb{R}^2 : y \in \mathbb{Q}\}$			
(6)	Let $B(0,1)$ be an open ball in \mathbb{R}^n . Let boundary of the set $B(0,1)\setminus A$ is	A be a finite subset of $B(0,1)$. Then the			
	(A) $\{x \in \mathbb{R}^n : x = 1\}$	(C) $B(0,1) \setminus A$			
	(B) A	(D) $\{x \in \mathbb{R}^n : x = 1\} \cup A$			
(7)	Let (\mathbb{R}, d) be a metric space, where $d(x, t)$	$(y) = \frac{ x-y }{1+ x-y }$, then the diam(\mathbb{R}) is			
	(A) 0	(C) 2			
	(B) 1	(D) ∞			
	Let $(X, d_1) = (\mathbb{R}, d_1), d_1$ being the usual discrete metric. Let $I : (\mathbb{R}, d_2) \to (\mathbb{R}, d_1)$				
	(A) I is one-to-one.	(C) I is continuous.			
	(B) I is onto.	(D) I^{-1} is continuous.			
(9)	Parabola $y = x^2$ in \mathbb{R}^2 is homeomorphic to	50			
	(A) \mathbb{R}	(C) ellipse			
	(B) $(-1,1)$	(D) hyperbola			

(10) Which of the following subsets of \mathbb{R} is compact?

(A) (0,1]

(C) $\{x \in \mathbb{N} : 1 \le x \le 100\}$

(B) Q

(D) (0,1)

(11) Let $f: X \to \mathbb{R}$ be a nonconstant continuous function on a connected metric space, then f(X) is

(A) finite

(C) singleton

(B) countably infinite

(D) uncountable

(12) Which of the following subsets of \mathbb{R}^2 are connected?

 $\begin{array}{ll} \text{(A)} \ \{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \\ \text{(B)} \ \{(x,y) \in \mathbb{R}^2 : x^2 - y^2 = 1\} \end{array} \\ \text{(D)} \ \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q}, y \notin \mathbb{Q}\} \\ \end{array}$