1604N198

Candidate's	Seat No	:

M.Sc Semester-2 Examination

407

Physics

Time: 2-30 Hours]

April-2024

[Max. Marks: 70

Quantum Mechanics II and Mathematical Physics-II

- Q.1 (A) Prove that the wave function remains symmetric with variation of time. Obtain [07] the symmetric and anti-symmetric wave functions from unsymmetrized wave function.
 - (B) Discuss the Pauli Principle for a system of non-interacting indistinguishable [07] particles.

OR

- Q.1 (A) Discuss Heisenberg picture and obtain the Heisenberg's equations of motion [07] for an operator \hat{A}_H . Prove that these equations are identical with the corresponding canonical equations of Hamiltonian in classical mechanics.
 - (B) Discuss the interaction picture to prove that the state vector in interaction picture can be determined by Schrodinger equation, while the operators obey the Heisenberg equation.
- Q.2 (A) Discuss the time dependent perturbation theory, and obtain expression for the [07] matrix element of Hamiltonian H'_{mn} , when the perturbation is just switched on.
 - (B) Prove that the coherent states are not orthogonal. Also prove that the coherent [07] states are closest to the classical states.

ΩR

- Q.2 (A) Write expressions for the creation and annihilation operators. Hence prove that $[\hat{a}, \hat{a}^+] = 1$. Explain how the effect of \hat{a} and \hat{a}^+ creates equally spaced eigen value ladder of unit steps.
 - (B) Prove that the expectation value of number operator is positive real number for [07] the coherent states. Prove that "the probability that there are *n* photons in the coherent state is given by Poisson distribution".
- Q.3 (A) Evaluate definite integral (I) using the residue theorem, where I = $\int_{0}^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta$ [07]
 - (B) Using Cauchy-Riemann's conditions, find out following functions are analytic [07] or non-analytic

(i)
$$\omega = f(Z) = \cos h(Z)$$

$$(ii)$$
 $\omega = f(Z) = e^{Z}$

OR

Q.3 (A) Cauchy integral theorem-Discuss Cauchy integral theorem for simply and [07] multiply connected region.

- (B) (i) Find residue of f(Z) at Z = i [07] (ii) Find residue of $f(Z) = \frac{Z}{(2Z+1)(5-Z)}$ at $Z = -\frac{1}{2}$ and Z = 5 using simple pole method
- Q.4 (A) Using Neumann series method evaluate [07]

$$\emptyset(x) = \frac{5}{6} x + \frac{1}{2} \int_0^1 xt \, \emptyset(t) dt$$

(B) Show that [07]

$$\emptyset(x) = x - \int_0^x (t - x) \, \emptyset(t) \, dt = \sin hx$$

OR

Q.4 (A) Evaluate following function using Neumann series method $\emptyset(x) = x + \lambda \int_0^1 xt \, \emptyset(t) dt$ [07]

- (B) Prove that $\emptyset(x) = 1 + \int_0^x (t x) \, \emptyset(t) \, dt = \cos x$ [07]
- Q.5 Answer in brief **Any Seven** questions from the following: (Each question is of [14] **two** marks).
 - (i) What is the basic difference among the Schrodinger picture, Heisenberg picture and Interaction picture?
 - (ii) Write the spin eigen functions of S_z for s = 3/2.
 - (iii) Define indistinguishable particles.
 - (iv) Prove that $[\widehat{a^+}, \widehat{n}] = -\widehat{a^+}$
 - (v) Prove that $|3\rangle = (3!)^{-1/2}\hat{a}^{+3}|0\rangle$
 - (vi) Prove that $[\hat{a}, \hat{n}] = \hat{a}$
 - (vii) Write uses of Cauchy-Riemann's conditions.
 - (viii) Find out real u(x, y), and imaginary v(x, y) of function f(Z)=1/Z
 - (ix) What is a holomorphic function?
 - (x) Write the homogeneous and non-homogeneous integral equations.
 - (xi) If $\emptyset(x) = 1 2 \int_0^x t \, \emptyset(t) \, dt$ then find out f(x), λ , α , b and K(x, t)
 - (xii) If $\emptyset(x) = x + \lambda \int_0^1 xt \, \emptyset(t) \, dt$ then find out $\emptyset_1(x)$