1507E560

Candidate	's Seat	No:	
-----------	---------	-----	--

M.Sc. (AIML DS) Sem.-3 (A.T.K.T.) Examination

Deep Learning and its Applications in Security

Time: 3-00 Hours

July-2024

Max. Marks: 100

Instructions:

- Write both the Sections in the separate answer book.
- Both Sections having equal weightage.
- Draw Diagrams wherever necessary.
- Make Assumptions wherever necessary.

SECTION - I

- Q-1 Explain the following activation functions (write respective formulas): (10)
 - a. Binary step function
 - b. Sigmoid
 - c. Tanh
 - d. ReLU
 - e. Softmax
- Q-2 Attempt the following: (any two)

(20)

- a. Explain Deep Learning techniques for security and give their solutions to prevent those attacks.
- b. Difference between Biological Neuron and Artificial Neuron, in detail with necessary diagrams.
- c. Explain in detail what is a Convolutional Neural Network with the help of a proper labelled architecture.
- Q-3 Attempt the following: (any two)

(20)

- a. Explain RNN using a fully labelled architecture and also explain the vanishing gradient problem in RNN.
- b. Write model summary for the following CNN architecture. Also, explain equivariant and invariant properties of CNN.

c. Explain Regularization and any three techniques of regularization in detail.

E560-2

SECTION – II

Q-4	 Explain the following Terms with an appropriate example. a. What is max pooling? b. What is VC- dimensionality? c. Brief the concept of generalization. d. Brief Adam Optimizer. e. How Machine Learning works in Security? 	(10)	
Q-5	Attempt the following: (any two)		
	a. Explain how LSTM stores long-term and short-term memories using architecture.	(20)	
	b. Explain ReLu activation function along with its advantages and disadvantages. Also, explain what is dying ReLu and how to solve it.		
	c. Explain how GRU helps to overcome the vanishing gradient problem through its architecture.		
Q-6	Attempt the following: (any two)		
	 a. Explain how neural network can solve XOR problem using a numerical example. 	(20)	
	b. Explain in detail various Optimization techniques used for training deep learning models.		
	c. What is pooling? Explain the how max pooling is invariant to translation and rotation.		